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Abstract!

This paper presents a design framework for a controller of a
telerobotic system. The controller is designed so the dynamic behaviors
of the master robot and the slave robot are functions of each other.
This paper first describes these functions, which the designer sets based
upon the application, and then proposes a control architecture to achieve
these functions. To guarantee that the specified functions and proposed
architecture govern the system behavior, H o control theory and modetl
reduction techniques are used. Several experiments were conducted to
verify the theoretical derivations.

Nomenclature
All vectors are nx1 and all matrices are nxn, unless specified otherwise.

Ap :Matrix; desired force amprification

Ay :Matrix; desired position amplification

E :Matrix; environment impcdance

et :Vector; deviation from the desired amplified force

ey :Vector; deviation from the desired amplified position

€m :Vector; deviation from the desired master port impedance
€y :Vector; deviation from the desired slave port impedance

fext :Vector; any force imposed on the load other than slave robot
m :Vector; force imposed on the master robot by a human

fs :Vector; force imposed on the slave robot by an environment?
Gm :Matrix; closed-loop position-tracking transfer function of a

master robot

Gs :Matrix; closed-loop position-tracking transfer function of a
slave robot ’

H :Matrix; controller

P :Introduced in Figure 3 anJ equation 9

Sk :Matrix; sensitivity of the human arm to the imposed motion

Sm :Matrix; sensitivity of the master robot with a closed-loop

) position controller to the imposed force

Ss :Matrix; sensitivity of the slave robot with a closed-loop
position controller to the .mposed force

u :[um ugl' (defined in equation 18)

Uh :vector; the human muscle force which initiates a maneuver

Um :Vector; desired position o1 the master robot

ug :Vector; desired position of the slave robot

v :[up fextl' (defined in ¢juation 18)

Wy :Matrix; weighting function, (equation 15)
Wf :Matrix; weighting function, (equation 16)
Wzm  :Matrix; weighting function, (equation 17)

y :[fm fs]'  (defined in equation 18)

Ym :Vector; position of the master robot

Yg :Vector; position of the slave robot

Zm :Matrix; desired port impedance of the master robot
Zg :Matrix; desired port impedance of the slave robot
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1. Telerobotic Performance Specifications

A telerobotic system (Figure 1) consists of a master robot and
a slave robot. For the telerobotic system, the designer can specify the
desired behavior [2,13]. For example, the designer may want a dynamic
behavior in which the human operator senses scaled-down values of the
forces which the slave robot senses when maneuvering an object, To
achieve this, a controller must be designed so the ratio of the forces on
the slave, fg, to the forces on the master, fry, equals a number greater
than unity. Then the desired relationship is fg = - a fy, where a is a
scalar greater than unity. (The negative sign, originating from the
convention used in Figure 1, implies the opposite directions of fg and
fm.) In another example, the slave is attached to a pneumatic
jackhammer. Then, the objective may be both to attenuate and to filter
the jackhammer forces so the human operator senses only low-frequency
scaled-down components of the rorces that the slave senses. This
requires a low-pass filter-equivalert relationship, f = o 5, where ot is

.a low-pass filter transfer function. In another example, instead of

shaping the forces as in the examples above, it may be desirable to
specify a desired relationship between the master and slave positions.
For instance, the slave position could be a scaled-down version of the
master position in order to have greater precision in maneuvering.

In general, it is desirable to shape the relationships between
forces and positions at both ends of the telerobotic system. Inspection
of Figure 1 reveals the relationships between the master and slave
variables which have physical significance, that is fm, ym. fs, and ys,

¥g= Ay Ym Y]
fs = Af fm ]
fm=Zm ym 3
fs=2Zs ys @

Generally, Ay, Af, Zm, and Zg are frequency-dependent
matrices. Ay and Af specify the amplification of position and force
respectively between the master and the slave. Zm and Zg characterize
the impedances of the master and slave ports. Since the four
relationships are interdependent, the entire system performance is
specfied when any three of these four relationships are specified. The
next section introduces a practical control structure which achieves the
performance specified by the four equations.

master robot slave robot

environment

Figure 1: The human constrains the motion of the master robot while
the environment constrains the motion of the slave robot.



2. The Control Architecture
Design of the control architecture must consider the dynamic
behaviors of the master robot, the slave robot, the human operator, and
_the environment. These are discussed first.
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It is assumed that both the master robot and the slave robot
have independent closed-loop position controllers. For brevity, the
selection of this controller is not discussed here. See Reference [1] for
detailed description of such control method. The use of these primary
stabilizing controllers in both the master robot and the slave robot is
motivated by the following reasons.

1) For the safety of the human operator, the master must remain
stable when not held by a human operator. A closed-loop position
controller keeps the master robot stationary when not held by the
operator.

2) For the security of the environment, the slave robot must remain
stable if the communication between the slave and master is cut off
accidentally. A closed-loop position controller keeps the slave
robot stationary in these cases.

3) To attenuate the effects of nonlinear dynamics, a primary
stabilizing compensator can eliminate the effects of friction force in
its joints and transmission mechanism.

The derivations of the dynamic behaviors of the master robot
and the slave robot are very similar, so only the master robot's dynamic
behavior is derived here. The master robot's position, ym, results from
two inputs: up, the desired-position command to the master's position
controller, and fpy, the forces imposed on the master robot. Gpp is the
primary closed-loop transfer function whose input is the desired-
position command, up, and whose output is the master position, ym.
Sm is the “sensitivity” transfer function whose input is the force
imposed on the master, fiy, and whose output is the master position,
ym. Thus, equation 5 represents the dynamic behavior of the mastzr
robot.

ym = Gm Um + Sm fm )]

fm represents force from only the human operator, since the
master robot is in contact with only the human operator. The master
robot has a small response to the human force, f, if the magnitude of
Si is small. A small Sy, is achieved through the use of a high-gain
closed-loop position controller as the primary controller or through the
use of an actuator with a large gear ratio [8].

The dynamic behavior of the slave robot is defined by equation
6, which is similar to equation 5.

ys = Gs us + Sg fs ©

ug is the desired position command to the slave position controller, and
f5 is the force imposed on the slave robot endpoint by the environment.

Gg and Sg are similar to Gp and Sy and represent the effects of ug and

fgonys,

D ic Behavior of

The dynamic behavior of the human arm is modeled as a
functional relationship between a set of inputs and a set of outputs.
Therefore, the internal structure of the human operator is not of
concern: the particular dynamics of nerve conduction, muscle
contraction and central nervous system processing are implicitly
accounted for in constructing the dynamic model of the human arm.
Refer to [14] for a thorough review of various dynamic models of the
human arm.

The force imposed by th: human arm on the master robot
results from two inputs. The first input, up, is the force imposed by
the human muscles? and the second input, ys, is the position of the
slave robot. Thus, one may think of the master robot position as being
a position disturbance occurring on the force-controlied human arm. If

31t is assumed that the specified form of up is not known other than
that it is the result of human thought deciding to impose a force onto
the master robot. The dynamic behavior in the generation of up by the
hurmnan central nervous system is of little importance in this analy.is
since it does not affect the system performance and stability.

the master robot is stationary, the force imposed on the master robot is
a function only of human muscle forces. However, if the master robot
moves, the force imposed on the master robot is a function not only of
the muscle forces but also of the master robot position. In other words,
the human contact force with the master robot is disturbed and is
different from up, if the master robot is in motion. Sy maps the master
robot position, ym, onto the contact force, fm, in equation 7.

fm = uh - Shym )]

Sh is the human arm impedance and is determined primarily by the
physical properties of the human arm.

Telerobotic systems are used for manipulating objects or
imposing force on objects. Defining E as a transfer function
representing the dynamics of the environment and fext as the equivalent
of all the external forces imposed on the environment, equation 8
provides a general expression for the force imposed on the slave robot
in the linear domain.

fs = -E ys + fext ®

If the slave robot is used to push a spring and damper as shown in
Figure 1, E is a transfer function so E(s) = (k + ¢ s) and fext = 0 where
k, ¢ and s are the stiffness, damping and Laplace operator, respectively.

The proposed control structure is shown in Figure 2, which
also represents the dynamic behaviors of the telerobotic system, the
human arm and the environmerit. Each dashed block represents one of
the dynamic model equations 5 through 8. The information signals (the
contact forces: fiy and fg) are processed by controller H. The output of
this controller is then fed to both drive systems, that of the master
robot and that of the slave robot. Note that there is no position cross-
feedback between the robots; only the contact forces are measured for
feedback. This is a fundamental difference between this control
structure and previous ones. (Refer to [6] and [7] for a summary of
previous telerobotic control structures.) The motion of the master
robot is partially due to the transfer of human power and partially due to
the command generated by the computer. Since the mapping GmH11
acts in parallel to Sy, Hy1 has the effect of increasing the apparent
sensitivity of the master robot. Similarly, compensator H22 is chosen
o generate compliancy in the slave robot in response to the force fg
imposed on the endpoint of the slave robot [9, 11, 15]. The interaction
force fg also affects the master robot as a force reflection after passing
through the the compensator H12.

The goal of this effort is to find H so the chosen performance
specifications, given by equations 1 through 4 are achieved and the
stability of the system shown in Figure 1 is guaranteed.
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Figure 2: The proposed control structure.



3. Review of the Standard He Control Problem

Figure 3 shows the basic block diagram used for the standard
H oo control problem.
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Figure 3: The standard H oo block diagram

In Figure 3, P is the generalized plant and H is the controller. P
contains what is usually called the plant in a control system and also
contains all weighting functions. The vector-valued signal v is the
exogenous input, whose components are typically commands,
disturbances and sensor noises. z 1s the output vector to be controlled,
whose components are typically tracking errors. u is the control input
vector. y is the measured output vector.

In order to express the closed-loop input-output mapping from
v to z as a linear fractional transformation (LFT) on H, the
interconnection structure P is partitioned in the following form:

P11 P12
P=
P21 P22

and:z=P11 v+Pj2u (10)
y=P21v+Pou an
Then; z=Fv (12)
where: F=P11 +P12 H(I-Po H)! Py1. a3)

The standard H.. control problem is to find a stabilizing
controller H which minimizes |F |“ (i.e., H oo norm of F), where:

Ich =supgo (lcl Go) a4

'6(-) denotes the maximum singulai value. A detailed review of H o is
given in [4] and state-space results are discussed in [3]. In this
algorithm Ho. norm minimization is used to obtain a stabilizing
controller Hso |Fj |°°< ¥, where ¥ is a positive small number and

may be interpreted as a measure of performance.

4. Problem Formulation

Depending on the application, the designer is free to choose
any three of the four relationships in equations 1 through 4 to specify
the system performance. This article chooses Ay, A¢ and Zpy (i.e.,

equations 1, 2 and 3) as the performance specifications for the example
solution herein. (The solution obtained in this article can be achieved
similarly for all other possible co.mbinations.) Now having fixed the
performance specifications, the control problem reduces to designing a
controller that guarantees minimal deviations of the system performance
from the chosen performance specifications. Equations 15, 16 and 17
represent possible deviations in the system performance.

z] = Wy (yg - Ay yp) 15
23 = Wi (fs - Ap fm) (16}
23 = Wy (¥, - Zm  fm) an

where Wy, Wp and W, are weighting function matrices. The block

diagram of Figure 4 is derived from Figure 2 to represent z1, z2, z3.
This block diagram is converted to the architecture of Figure 3 by
choosing:

up fm Um Hj Hp2
2=|{22} v= Y= , U= , H=
fex fs ug Hy1 H22

18)

WyAySm@+SpSm)’ WySs(+ESg) !

P11= -wat<1+shs,,,)'1 wt(1+1=.ss)'1 (19)

-1 .
Wom(Sm-Zm )A+ShSm) 0

-1 - .-
WyAySy @+SpSm) ISHGm  WySs@+ES9)" s 16

P12 = WfAf(I+ShSm)'ISth -W(I+ESg)’ 'BGq
. - -
L Wy +Zm H+ShSm) " ShGm 0
) : (20)
(I+ShSm)” 0

P21 = ; e3)
| 0 (+ESg) .
[ -+suSm) ' S1Gm 0

Py = 4 @
i 0 -+1is9 'EGg

An intemnally balanced realization [S, 12] is performed to find matrix H
so minimizes | F Iuis minimized where F maps v to z as in equation

12, The order of the resulting controller is high. A reduced-order
controller is obtained by neglecting the weakly controllable and
observable states of the contmller
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Figure 4: The control problem 15 to find a stabilizing controller H
which m.nimizes z.

5. Experiments

Figure S5 shows the experimental setup: a two-degree-of-
freedom X-Y table used as the master robot. A three-degree-of-freedom
composite robot [10] is used as the slave robot. Since the master robot
operates only on a horizontal plane, one of the slave's robot actuators is
physically locked so that the slave robot operates only on the horizontal
plane also. The human operator holds a handle to move the master
robot. fm, the contact force between the operator and master robot, is
measured by a force sensor on the handle. fg the contact force between
the slave robot and the environment, is measured by a force sensor at
the slave robot endpoint.

The primary stabilizing controller for the master robot is a
lead-lag controller. This controller achieves the widest bandwidth for
the closed-loop position transfer function matrix Gy, and yet stabilizes
the X-Y table in the presence of unmodeled dynamics. Since the table
motion is uncoupled, G, is a 2x2 diagonal transfer function matrix
representing the X-Y table dynamics in the X-direction and Y-direct.on
(Figure 6). The analytical form of Gy, was verified experimentally via
a frequency response method and is given by equation 23.
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Due to the low pitch angle of the lead-screw mechanism, the X-Y table
is not backdrivable. Therefore, the master robot cannot be moved by
the force exerted on the handle by the human operator, and Sm is
virtually equal to zero.
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Figure 6: A top view of the master and slave robot

A computed torque method and a PD controller were used as
the primary stabilizing controller for the slave robot. This controller
develops an uncoupled dynamic model for the robot. The resulting
approximate closed-loop transfer function matrix and sensitivity matrix
are as follows.

1690.9

0
7
s¢ +42.1s + 1690.9
2= 3] 24
Gs o 1503.6 mjcm (24)

s2+40.35s+ 1503.6

89.19

s2 +39.80 s + 531.54 0
s= 0 12.08 cm/N
s2 + 36.76 s + 483.79
25)

Human Arm Dynamics

The human arm model derived here does not represent the
human arm sensitivity, Sp, for all configurations, but is only an
approximate and experimentally verified dynamic model of the author's
arm in the neighborhood of the operating configuration shown in
Figure 6. In the identifying process, the operator was seated next to the
master robot while grasping the handle with his right hand as shown in
Figure 6. The master robot was coramanded to oscillate in a sinusoidal
fashion along the x and y axes respectively. At each oscillation
frequency, the operator attempted to move his arm to follow the master
robot so that no contact force between his hand and the master robot
was generated (i.e., he decided not to impose any force on the master
robot (up = 0)). Since the human arm cannot keep up with any high
frequency movement of the master when trying to maintain zero contact
force, a large contact force and consequently a large Sp, are expected at
high frequencies. Since this force is equal to the product of the master
acceleration and the human arm inc rtia (Newton's Second Law), at least
a second-order transfer function is expected at high frequencies. At low
frequencies, however, the human can follow the large motions of the
master robot quite comfortably, but it is expected that some finite
contdct force is present. Therefore, the human arm sensitivity
approaches a finite value at low frequencies. Based upon the
experimental data, the best estima‘es for the author's arm sensitivities
along the x and y axes are: ’

0.15 (—52— +3241) 0
ol 7322725 B
o 2
§ 8 _
B 0 0.13 (2.752 215t 1)
2
Environment Dynamics @)

Figure 7 shows the environment simulator. This simulator
consists of two metal boards. Compression-type helical springs are
positioned between the stationary and movable metal boards to furnish
resistive force between the plates. The stationary board is mounted
tight. The dynamic model of the movable plate is expressed by
equation 27.

E=21.582 N/cm @n

where E us defined by equation 8.
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Figure 7: The schematic of the experiment simulator.

The environment simulator was set at a 10° angle with the
Cartesian coordinate x-axis as shown in Figure 7. The chosen
performance specifications for A¢ and Zpy are given by the following

equations.

Ap, O
Ag= @8)
0 Afy
o
Zm = [ § ] @9)
0 Zmy



where! Zmyx =Zmy =48+ 004 Niom {300
and Agg=-05 and Afy=-1.5 {313
001

The elements of all weighting functions were chosen s T
Through the controller design procedure given in section 3, the
controller was designed, Figures 8 shows the slave force and the master
force along the X-direction, Figure 9 shows the stive force versus the
master force where the slope of the fited curve confirms the
achievement of the desired force attenuation in the X-direction, Figures
10 and 11 zre similar to figures 8 and 9 and show the force
amplification along |J5|, Y-dinection,
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Figure 8: Plots of master and slave forces along the x-direction.
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Figure 11: The slope of the fitted linear curve = - 1.55 confirms the
force amplification of Af_‘y = - 1.5 along the y direction.

6. Summary and Conclusion

This paper presents a design framework for telerobotic systems
to achieve desired dynamic relationships between the master robot and
the slave robot. H o control theory and model reduction techniques
were used to guarantee that the system behavior was governed by the
proposed specified functions. Several experiments were carried out to
verify the theoretical derivations
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Abstract!

This paper presents a design framework for a controller of a
telerobotic system. The controller is designed so the dynamic behaviors
of the master robot and the slave robot are functions of each other.
This paper first describes these functions, which the designer sets based
upon the application, and then proposes a control architecture to achieve
these functions. To guarantee that the specified functions and proposed
architecture govern the system behavior, H o control theory and model
reduction techniques are used. Several experiments were conducted to
verify the theoretical derivations.

Nomenclature
All vectors are nx1 and all matrices are nxn, unless specified otherwise.

Ag :Matrix; desired force amprification
Ay :Matrix; desired position amplification

E :Matrix; environment impcdance
e :Vector; deviation from the desired amplified force
ey :Vector; deviation from the desired amplified position

€m :Vector; deviation from the desired master port impedance
€y :Vector; deviation from the desired slave port impedance
fext :Vector; any force imposed on the load other than slave robot

fm :Vector; force imposed on the master robot by a human
fs :Vector; force imposed on the slave robot by an environment?
Gm :Matrix; closed-loop position-tracking transfer function of a
' master robot
Gg :Matrix; closed-loop position-tracking transfer function of a
slave robot
H :Matrix; controller
P :Introduced in Figure 3 anJ equation 9
Sh :Matrix; sensitivity of the human arm to the imposed motion
Sm :Matrix; sensitivity of the master robot with a closed-loop
: position controller to the imposed force
Ss :Matrix; sensitivity of the slave robot with a closed-loop
position controller to the .mposed force
u :[um ug]' (defined in equation 18)
up :vector; the human muscle force which initiates a maneuver
m :Vector; desired position o1’ the master robot
ug :Vector; desired position of the slave robot
v :[up fexyl' (defined in equation 18)

Wy :Matrix; weighting function, (equation 15)
wE :Matrix; weighting function, (equation 16)
Wzm  :Matrix; weighting function, (equation 17)

y :[fm fg]'  (defined in equation 18)

Ym :Vector; position of the master robot

Yg :Vector; position of the slave robot

Zm :Matrix; desired port impedance of the master robot
Zg :Matrix; desired port impedance of the slave robot
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1. Telerobotic Performance Specifications

A telerobotic system (Figure 1) consists of a master robot and
a slave robot. For the telerobotic system, the designer can specify the
desired behavior [2,13]. For example, the designer may want a dynamic
behavior in which the human operator senses scaled-down values of the
forces which the slave robot senses when maneuvering an object, To
achieve this, a controller must be designed so the ratio of the forces on
the slave, fg, to the forces on the master, fm, equals a number greater
than unity. Then the desired relationship is fg = - & fy, where ais a
scalar greater than unity. (The negative sign, originating from the
convention used in Figure 1, implies the opposite directions of f5 and
fm.) In another example, the slave is attached to a pneumatic
jackhammer. Then, the objective may be both to attenuate and to filter
the jackhammer forces so the human operator senses only low-frequency
scaled-down components of the rorces that the slave senses. This
requires a low-pass filter-equivalert relationship, f = a fg, where auis

.a low-pass filter transfer function. In another example, instead of

shaping the forces as in the examples above, it may be desirable to
specify a desired relationship between the master and slave positions.
For instance, the slave position could be a scaled-down version of the
master position in order to have greater precision in maneuvering.

In general, it is desirable to shape the relationships between
forces and positions at both ends of the telerobotic system. Inspection
of Figure 1 reveals the relationships between the master and slave
variables which have physical significance, that is fm, ym, fs, and ys,

Y= Ay ¥Ym @
fs= Af fm @
fm=Zm ¥Ym 3
fs=Zs ys @

Generally, Ay, Af, Zm, and Zg are frequency-dependent
matrices. Ay and Af specify the amplification of position and force
respectively between the master and the slave. Zy and Zg characterize
the impedances of the master and slave ports. Since the four
relationships are interdependent, the entire system performance is
specfied when any three of these four relationships are specified. The
next section introduces a practical control structure which achieves the
performance specified by the four equations.

master robot ) slave robot

snvironment
Ym . v

Figure 1: The human constrains the motion of the master robot while
the environment constrains the motion of the slave robot.



2. The Control Architecture

Design of the control architecture must consider the dynamic
behaviors of the master robot, the slave robot, the human operator, and
the environment. These are discussed first.
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It is assumed that both the master robot and the slave robot
have independent closed-loop position controllers. For brevity, the
selection of this controller is not discussed here. See Reference [1] for
detailed description of such control method. The use of these primary
stabilizing controllers in both the master robot and the slave robot is
motivated by the following reasons.

1) For the safety of the human operator, the master must remain
stable when not held by a human operator. A closed-loop position
controller keeps the master robot stationary when not held by the
operator.

2) For the security of the environment, the slave robot must remain
stable if the communication between the slave and master is cut off
accidentally. A closed-loop position controller keeps the slave
robot stationary in these cases.

3) To attenuate the effects of nonlinear dynamics, a primary
stabilizing compensator can eliminate the effects of friction force in
its joints and transmission mechanism.

The derivations of the dynamic behaviors of the master robot
and the slave robot are very similar, so only the master robot’s dynamic
behavior is derived here. The master robot's position, ym, results from
two inputs: uyy, the desired-position command to the master's position
controller, and f, the forces imposed on the master robot. Gy is the
primary closed-loop transfer function whose input is the desired-
position command, up, and whose output is the master position, ym.
Sm is the “sensitivity” transfer function whose input is the force
imposed on the master, fy, and whose output is the master position,
ym. Thus, equation 5 represents the dynamic behavior of the master
robot.

Ym = Gm um + Sm fm 6)]

fr represents force from only the human operator, since the
master robot is in contact with only the human operator. The master
robot has a small response to the human force, fry, if the magnitude of
Sm is small. A small Sy, is achieved through the use of a high-gain
closed-loop position controller as the primary controller or through the
use of an actuator with a large gear ratio [8].

The dynamic behavior of the slave robot is defined by equation
6, which is similar to equation 5.

yS=Gs Us+Ss fs (6)

ug is the desired position command to the slave position controller, and
fg is the force imposed on the slave robot endpoint by the environment.

G and Sg are similar to Gy and Sy and represent the effects of ug and

fgonys,

Dynami vior of

The dynamic behavior of the human arm is modeled as a
functional relationship between a set of inputs and a set of outputs.
Therefore, the internal structure of the human operator is not of
concern: the particular dynamics of nerve conduction, muscle
contraction and central nervous system processing are implicitly
accounted for in constructing the dynamic model of the human arm.
Refer to [14] for a thorough review of various dynamic models of the
human arm.

The force imposed by th: human arm on the master robot
results from two inputs. The first input, up, is the force imposed by
the human muscles3 and the second input, yg, is the position of the
slave robot. Thus, one may think of the master robot position as being
a position disturbance occurring on the force-controlled human arm. If

31t is assumed that the specified form of up is not known other than
that it is the result of human thought deciding to impose a force onto
the master robot. The dynamic behavior in the generation of up by e
human central nervous system is of little importance in this analy .is
since it does not affect the system performance and stability.

the master robot is stationary, the force imposed on the master robot is
a function only of human muscle forces. However, if the master robot
moves, the force imposed on the master robot is a function not only of
the muscle forces but also of the master robot position. In other words,
the human contact force with the master robot is disturbed and is
different from up, if the master robot is in motion. Sp, maps the master
robot position, ym, onto the contact force, fy, in equation 7.

fm = Uh - Shym Q)]

Sp is the human arm impedance and is determined primarily by the
physical properties of the human arm.

ic Behavior of ir
Telerobotic systems are used for manipulating objects or
imposing force on objects. Defining E as a transfer function
representing the dynamics of the environment and fext as the equivalent
of all the external forces imposed on the environment, equation 8

provides a general expression for the force imposed on the slave robot
in the linear domain.

fs = -E ys + fext ®

If the slave robot is used to push a spring and damper as shown in
Figure 1, E is a transfer function so E(s) = (k + ¢ s) and fext = O where
k, ¢ and s are the stiffness, damping and Laplace operator, respectively.

The proposed control structure is shown in Figure 2, which
also represents the dynamic behaviors of the telerobotic system, the
human arm and the environmerit. Each dashed block represents one of
the dynamic model equations 5 through 8. The information signals (the
contact forces: fin and fg) are processed by controller H, The output of
this controller is then fed to both drive systems, that of the master
robot and that of the slave robot. Note that there is no position cross-
feedback between the robots; only the contact forces are measured for
feedback. This is a fundamental difference between this control
structure and previous ones. (Refer to [6] and [7] for a summary of
previous telerobotic control structures.) The motion of the master
robot is partially due to the transfer of human power and partially due to
the command generated by the computer. Since the mapping GmH11
acts in parallel to S, H11 has the effect of increasing the apparent
sensitivity of the master robot. Similarly, compensator H22 is chosen
to generate compliancy in the slave robot in response to the force fg
imposed on the endpoint of the slave robot [9, 11, 15]. The interaction
force fg also affects the master robot as a force reflection after passing
through the the compensator H12.

The goal of this effort is to find H so the chosen performance
specifications, given by equations 1 through 4 are achieved and the
stability of the system shown in Figure 1 is guaranteed.
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Figure 2: The proposed control structure.



3. Review of the Standard H. Control Problem

Figure 3 shows the basic block diagram used for the standard
H eo control problem.

DI s PR
y u

H
Figure 3: The standard H oo block diagram

In Figure 3, P is the generalized plant and H is the controller. P
contains what is usually called the plant in a control system and also
contains all weighting functions. The vector-valued signal v is the
exogenous input, whose components are typically commands,
disturbances and sensor noises. z 1s the output vector to be controlled,
whose components are typically tracking errors. u is the control input
vector. y is the measured output vector.

In order 10 express the closed-loop input-output mapping from
v to z as a linear fractional transformation (LFT) on H, the
interconnection structure P is partitioned in the following form:

P11 P12
P=
Py1 P22

and: z=P11 v+Pi2u (10)
y=P21v+Ppu an
Then: z=Fv (12)
where: F=P11 +P12 H(I-P22 H)'1 P21. 13)

The standard Hee control problem is to find a stabilizing
controller H which minimizes | F I., (i.e., H oo norm of F), where:

cl =supyo (lcl_ Gw)) (14)

“6(-) denotes the maximum singulai value. A detailed review of H oo is
given in [4] and state-space results are discussed in [3]). In this
algorithm H., norm minimization is used to obtain a stabilizing
controller Hso |F 1 |°°< ¥, where v is a positive small number and

may be interpreted as a measure of performance.

4. Problem Formulation

Depending on the application, the designer is free to choose
any three of the four relationships in equations 1 through 4 to specify
the system performance. This article chooses Ay, Ag and Zn (i.e.,

equations 1, 2 and 3) as the performance specifications for the example
solution herein. (The solution obtained in this article can be achieved
similarly for all other possible coinbinations.) Now having fixed the
performance specifications, the control problem reduces to designing a
controller that guarantees minimal deviations of the system performance
from the chosen performance specifications. Equations 15, 16 and 17
represent possible deviations in the system performance.

71 = Wy (yg - AY vp) s

) = Wf(fs - Af fm) (16)
-1

23 = Wy (¥ - Zm  fm) an

where Wy, Wp and W, are weighting function matrices. The block

diagram of Figure 4 is derived from Figure 2 to represent zy, z2, z3.
This block diagram is converted to the architecture of Figure 3 by
choosing:

Z] £
Uh m um Hn Hp
=tz v= ,y= , u= , H=
fex f us Hy1 H22

23
13

F -WyAySm(I+shsm)'l WySs(I+ESs)'1
P11 = WeALT+ShSm) W(+ESg) ! 19

-1 -1
- Wym(Sm-Zm “)A+ShSm) 0

-1 . a1 -
WyAySh  (1+SpSm) 'SHGm  WySs(+ES9 ss 1Gs

Pi2= WALI+ShSm) "ShGm -W+ES9) 'EGs
L WomSh +Zm )+ ShSm) 'ShGm 0
] 1 @

(1+5hSm)” 0

P1 = . ey
L 0 (I+ESg) ~
[ @+ShSm) ' ShGm 0

Py = B @
i 0 -89 EGs

An internally balanced realization [5, 12] is performed to find matrix H
so minimizes |F I» is minimized where F maps v to z as in equation

12. The order of the resulting controller is high, A reduced-order
controller is obtained by neglecting the weakly controllable and
observable states of the contmller
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Figure 4: The control problem s to ﬁnd_?z stabilizing controller H
which m.nimizes z.

5. Experiments

Figure S shows the experimental setup: a two-degree-of-
freedom X-Y table used as the master robot. A three-degree-of-freedom
composite robot [10] is used as the slave robot. Since the master robot
operates only on a horizontal plane, one of the slave's robot actuators is
physically locked so that the slave robot operates only on the horizontal
plane also. The human operator holds a handle to move the master
robot. fy, the contact force between the operator and master robot, is
measured by a force sensor on the handle. fg the contact force between
the slave robot and the environment, is measured by a force sensor at
the slave robot endpoint.

Robot Dynamics

The primary stabilizing controller for the master robot is a
lead-lag controller. This controller achieves the widest bandwidth for
the closed-loop position transfer function matrix Gy, and yet stabilizes
the X-Y table in the presence of unmodeled dynamics, Since the table
motion is uncoupled, G is a 2x2 diagonal transfer function matrix
representing the X-Y table dynamics in the X-direction and Y-direct:on
(Figure 6). The analytical form of Gy, was verified experimentally via
a frequency response method and is given by equation 23.



s2 1s 0
(3—1-2- + 2% + 1)
Gm = :mfem (23)
n 2
az*1a+ D

Due to the low pitch angle of the lead-screw mechanism, the X-Y table
is not backdrivable. Therefore, the master robot cannot be moved by
the force exerted on the handle by the human operator, and Sy, is
virtually equal to zero.

-
b ™

. e —_—
o[ D )
L

Figure 6: A top view of the master and slave robot

A computed torque method and a PD controller were used as
the primary stabilizing controller for the slave robot. This control}er
develops an uncoupled dynamic model for the robot. 'I"he.resulnrgg
approximate closed-loop transfer function matrix and sensitivity matrix
are as follows.

1690.9

0
2
s~ +42.15s + 1690.9
- 3 24
Gs 0 15036 m/em (24)

s2 + 40.3 s + 1503.6

r 89.19
i s2+39.80s+531.54
S5=| 0 12.08
s2 +36.76 s + 483.79

0
cm/N

, 25)
man D i

The human arm model derived here does not represent the
human arm sensitivity, Sp, for all configurations, but is only an
approximate and experimentally verified dynamic model of the author's
arm in the neighborhood of the operating configuration shown in
Figure 6. In the identifying process, the operator was seated next to the
master robot while grasping the handle with his right hand as shown in
Figure 6. The master robot was cormanded to oscillate in a sinusoidal
fashion along the x and y axes respectively. At each oscillation
frequency, the operator attempted to move his arm to follow the master
robot so that no contact force between his hand and the master robot
was generated (i.e., he decided not to impose any force on the master
robot (up = 0)). Since the human arm cannot keep up with any high
frequency movement of the master when trying to maintain zero contact
force, a large contact force and consequently a large Sp, are expected at
high frequencies. Since this force is equal to the product of the master
acceleration and the human arm inc rtia (Newton's Second Law), at least
a second-order transfer function is expected at high frequencies. At low
frequencies, however, the human can follow the large motions of the
master robot quite comfortably, but it is expected that some finite
contact force is present. Therefore, the human arm sensitivity
approaches a finite value at low frequencies. Based upon the
experimental data, the best estima‘es for the author's arm sensitivities
along the x and y axes are: )

0.15 (i + 1) 0
< : 322 25 i
AN R 2
$ S
0 0.13 (2.752 XTARD
. (26)
VII 1| n

Figure 7 shows the environment simulator. This simulator
consists of two metal boards. Compression-type helical springs are
positioned between the stationary and movable metal boards to furnish
resistive force between the plates. The stationary board is mounted
tight. The dynamic model of the movable plate is expressed by
equation 27.

E=21582 Nfm @7
where E us defined by equation 8.
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Figure 7: The schematic «f the experiment simulator.

The environment simulator was set at a 10° angle with the
Cartesian coordinate x-axis as shown in Figure 7. The chospn
performance specifications for A¢ and Zp, are given by the following

equations.

Ay 0
0 A
Zm, O
2= @9
0



where: Zmx = Zmy =45+0.04 N/cm (30)
and Afx=-0.5 and Afy=-1.5 @31
The elements of all weighting functions were chosen as so‘fll.

Through the controller design procedure given in section 3, the
controller was designed. Figures 8 shows the slave force and the master
force along the X-direction. Figure 9 shows the slave force versus the
master force where the slope of the fitted curve confirms the
achievement of the desired force attenuation in the X-direction. Figures
10 and 11 are similar to figures 8 and 9 and show the force
amplification along the Y-direction.
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Figure 8: Plots of master and slave forces along the x-direction.
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Figure 10: Plots of master and slave forces along the Y-direction.
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Figure 11: The slope of the fitted linear curve = - 1.55 confirms the
Sforce amplification of Ajfy = - 1.5 along the y direction.
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6. Summary and Conclusion

This paper presents a design framework for telerobotic systems
to achieve desired dynamic relationships between the master robot and
the slave robot. H . control theory and model reduction techniques
were used to guarantee that the system behavior was governed by the
proposed specified functions. Several experiments were carried out to
verify the theoretical derivations
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