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ABSTRACT
This artic1e introduces three concepts: 1)

"te1efunctioning", 2) a contr01 method for achieving
te1efunctioning, and 3) an approach to the ana1ysis of
human-robot interaction when telefunctioning governs the
system behavior. Telefunctioning facilitates maneuvering
of loads by creating a perpetua1 sense of the load dynamics
for the operator. We define telefunctioning as a robotic
manipu1ation method in which the dynamic behaviors of the
slave robot and the master robot are functions of each other;
these functions are the designer's choice and depend on the
app1ication. In a subclass of te1efunctioning cal1ed
te1epresence, al1 of the re1ationships between the master and
the slave are specified as "unity" so that al1 of the master
and slave variables (e.g., position, ve10city) are
dynamical1y equa1. To create telefunctioning, we arrive at
a minimum number of functions re1ating the robots'
variab1es. We then deve10p a contr01 architecture which
guarantees that the defined functions govern the dynamic
behavior of the system. The stability of the c10sed-100p
system (master robot, s1ave robot, human, and the 10ad being
manipu1ated) is ana1yzed and sufficient conditions for
stabi1ity are derived.
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1. DEFINITION OF TELEFUNCTIONING
A telerobotic system consists of two robots: the

"master" which is maneuvered by a human, and the
"slave" which performs a task at a location remote from the
master. The master robot is not connected mechanically to
the slave robot. Figure 1 shows a telerobotic system where a
human is pushing against the master and the slave is
pushing against an environment2. "Telepresence" denotes
a dynamic behavior in which the environmental effects
experienced by the slave are transferred through the master
to the human without alteration; therefore, the human feels
that he3 is "th~re" without "being" there [2, 3, 9,13]. In the
following three examples, we discuss the concept of
"telefunctioning" and how it differs from "telepresence".
Exam12le 1

Suppose a telerobotic system is used to manipulate an
object through a completely arbitrary trajectory. We may
want a system dynamic behavior in which the human feels
scaled-down values of the forces that the slave experiences
when maneuvering the object. Therefore, we want to design
a system controller for which the ratio of the forces on the
slave to the forces on the master equals a number greater
thar! unity. Iffm4 and fs represents the forces on the

Figure 1: In a telerobotic system, a human constrains
the motion of the master robot while an environment

constrains the motion of the slave robot.
ExarnDle 2

We may want a dynamic behavior for the telerobotic
system in which the human, who is maneuvering a rigid
body, feels the forces as being those of maneuvering a light
single-point mass. This dynamic behavior masks the
cross-coupled forces associated with maneuvering a rigid
body; the human feels only the forces associated with the
acceleration of a single-point mass. This behavior is
desirable because cross-coupled forces contribute to the
difficulty of maneuvering a rigid body. In contrast to this
telefunctioning example, when telepresence governs the
system behavior, the forces on the master robot and slave
robot are equal, and the human would feel all of the forces,
including the cross-coupled forces, associated with
maneuvering a rigid body.

For the example above, the relationship between the
forces on the master robot and the forces on the slave robot
cannot be givell explicitly by an equation. Later, we will
develop a mathematical tool to frame the design
specifications needed in this situation.
ExarnDle 3

In another example, we may want a behavior for the
telerobotic system in which the slave robot position (not force,
as in example 1) equals a scaled-down value of the master
robot position. In other words, if \Jon and Ys are the positions
of the master robot and the slave robot, then Ys= ~\:Im where ~

1 C. L. Moore is currently working in NASA Langley

Research Center.
2 In this article, the word environment represents any object
being manipulated or pushed by the slave robot.
3 The pronouns "he", "his", and "him" are not meant to be

gender-specific.
4 The subscript "m" signifies the master and "s" signifies
the slave. Unless otherwise noted, all variables are defined
in I.aplace domain. The Laplace argument for all functions
are omitted.

master and on the slave, then fs= -a,fm where a, is a scalar
greater than unity. (The negative sign, originating from
the convention used in Figure I, implies the opposite
directions of f m and f 5.)

If the object being manipulated is a pneumatic
jackhammer. we may want to both filter and decrease the
jackhammer forces. Then, the human feels only the low-
frequency, scaled-down components of the forces that the
slave experiences. This requires a low-pass filter such that
f s=-a,f m where Ita, is a low-pass filter transfer function.

In this example of telefunctioning, the slave forces
are functions of the master forces 80 the human senses forces
different from those which the slave senses: in general the
slave and master forces are not equal as they would be in the
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is smaller than unity. This behavior is useful when great
precision is required in the slave maneuver; a few
centimeters of master motion correspond to a few microns of
slave motion. This would have applications in micro-
surgery. In contrast to this telefunctioning example, when
telepresence governs the system behavior, Ym and Ys are
equal.

equation 3 (while incorporating equations 7, 8, and 9) yields
a relationship between '.1m and fm such that fm = ms2 '.1m.
This proves that the human, when maneuvering a rigid
body, would fee] the forces due to maneuvering a sing]e-
point mass m.

A set of performance specifications for
te]efunctioning (e.g., equations 1, 2, and 3) does not assure
system stability but does let designers express what they
wish to have happen during a maneuver. If At and Ay are
specified as "unity", then telepresence is seen to be a
subclass of telefunctioning in which all the variables (e,g.,
position, velocity, force) of the master robot and the slave
robot are dynamically equal. But, in telefunctioning, the
dynamic ,behaviors of the slave robot and master robot are
functions of each other; these functions are the designer's
choice Iiild depend on the application. Note that, although the
design specifications described above are independent of the
control method used, we will propose a new and practical
control architecture in the next section to achieve these
specifications and create telefunctioning.

In each of the above examples, D.n.e. relationship
between the master robot and slave robot variables is the
performance specification for telefunctioning. But, ~
independent relationships can specify a particular type of
telefunctioning. Here, we mathematically frame
teletunctioning in terms of relationships which are
independent of the chosen control techniques. Without
formal proofS, we state that, for linear systems, only three
independent relationships can be specified among the four
variables: Ym, Ys, fm and fs. One possible set ofrela1;ionships is: '

Ys = Ay Ym (1)

fs = Af fm (2)

fs = Zs Ys (3)

Ay, Fit, and Zs are transfer functions. Ayand Af represent
the ]~elationships between the positions and forces while Zs is
the slave port impedance. Note that, once the above three
relationships are specified, no other independent
rela1;ionships can be specified. Figure 2 shows the variables
and their relationships graphically where the thick lines
represent the specified relationships (equations 1, 2, and 3)
and the thin lines portray other dependent relationships.

Ay
bJm bJs

2ml iZs

fm fs
Af

Figulre 2: If three relationships (thick lines) are specified
al1Jong the four variables, then any other relationships
(thin lines) will depend on the specified relationships.

Employing equations 1, 2, and 3, the dynamic
beh:avior of the system in example 1 can be expressed
mathematically by the following three equations.

Af = -fX (4)

Ay = 1 (5)

Zs :: arbitrary (6)
Af in equation 4 is the force amplification, and Ay in

equ:ation 5 states the equality of the master robot and slave
robot positions. Equation 6 shows that designers can freely
choose the slave port impedance, Zs. Note that, once
equ;ations 4, 5, and 6 are specified, no other equations can be
spe(:ified for the system.

Applying equations 1, 2, and 3 to example 2, the
design specifications for telefunctioning become:

Af =: -1 (7) I
I

Ay =: 1 (8) i

Zs =: ms2 (9)
where m represents the desired mass and s is the Laplace
operator. Substituting Ys and fs from equations 1 and 2 into

2.n-IECONTROLARCHITEcrURE
The control architecture to create te]efunctioning has the

following properties:
1. It Jets designers handle the robustness of the master robot

and the slave robot without getting involved in the
dynamics of the human, the dynamics of the object being
manipulated by the slave, or the communication time
delay [1]. In other words, the designers can minimize the
sensitivity of the master robot and the slave robot to
uncertain dynamic modeling of each robot independent
of any other variables.

2. This control architecture is the most genera] extension of
the previous te]erobotic control architectures (described in
[3]) and allows a variety of performance specifications.
We will show how conveniently the design specifications,
described in Section 1, will be mapped onto the variables
of the proposed control architecture.

3. The human wearing the master robot is in physical
contact with the machine, so power transfer is
unavoidable and information si~als from the human
help to control both master robot and slave robot. The
proposed control architecture conveniently depicts these
two paths of human-machine interaction.

To understand the control law, we use linear control
theory for a sing]e-degree-of-freedom telerobotic system;
thus, we can employ the rich concepts of linear control
theory. Understanding the proposed closed-loop control
approach requires understanding the dynamic behaviors of
the master and slave robots, the human arm, and the
environment, as discussed in the following sub-sections.

D~nami" B,,},av;lIr~ lift}", Ma~t."r Rohllt and the Slave Robot
It is assumed that both the master robot and the slave

robot primarily have independent closed-loop position
controllers. The use of these primary stabilizing
compensators6 in both the master and the slave is motivated
by the following:
1. For the safety of the human, the master must remain

stable when not worn by the human. A closed-loop
position controller keeps the master stationary when not
worn by the human.

2. This controller also minimizes the effects of frictional
forces in the joints and the transmission mechanism,
thus attenuating the sensitivity of each robot to uncertain
forces.

5 One can show, by Bond Graph Theory [11], that the system
causality will be violated if more than three relationships
are specified among the four variables: \:1m. \:Is, fm and fs.For the sake of brevity, the proof is not given here. '

6 Hereafter, the words primary stabilizing compensators
refer to two closed-loop position controllers that stabilize the
master robot and the slave robot. These controllers also
eliminate the effect of friction forces in the robots' joints.
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Sh, the human arm "sensitivity" function (or

impedance [5, 6] ), is the disturbance rejection property of the
human arm. If the gain of Sh is small, the master robot
motion has a small effect on the imposed forces, fm.

D~amic Behavior of the Environment
Telerobotic systems are used for manipulating

objects or imposing forces on objects. Defining E as a
transfer function representing the environment dynamics
and f ext as the equivalent of all the external forces imposed
on the environment, equation 13 provides a general
expression for the force imposed on the slave robot in the
linear domain 7.

fs= -E Ys + text (13)
If the slave robot is employed for pushing a spring and
damper, E is a transfer function such that E[s)= (K + Cs)
and text = 0 where K, C, Ys, and s are the stiffness,
damping, slave position, and Laplace operator. In another
example, if the slave robot is employed to maneuver a mass,
then the dynamics of the object being manipulated is
represented by E[s) = mos2 where mo is the mass of the

object.

3. 'I'he design of the primary stabilizing compensator lets
the designers deal with the robustness of the master robot
and the slave robot without getting involved in the
dlynamics of the human, the dynamics of the object being
1J£lanipulated by the slave, or the communication time
dlelay. A variety of robust control methods can be used to
stabilize the master and slave robots independently.
(Refer to [12, 14] for two well-established robotic
trajectory control techniques.)

Only the master dynamic behavior is derived here;
the derivation of the dynamic behavior of the slave robot is
similar to that of the master robot. The master robot position,
\:1m, results from two inputs: the electronic command to the
primary controller of the master robot and the forces
imposed on the master robot. The transfer function Gm is
defined as the primary closed-loop system with the
electronic command Um as the input and the master position,
\:1m, as the output. The master robot "sensitivity" transfer
funct.ion, Sm, maps the force imposed on the master robot, fm,
onto the master position, Ym. (Sm is the reciprocal of the robot
stiffness.) Equation 10 represents the master robot dynamic
behflvior in its most general form.,
Ym = Gm Um + Sm fm (10)

Since the master robot is in contact with only the
human, f m represents forces from only the human. The
motion of the master robot has a small response to the human
forces, fm, if the magnitude of Sm is small. Use of a high-
gaiI1l closed-loop positioning system as the primary
controller or use of an actuator with a large gear ratio yields
a small Sm. [4,6]

Similarly, the dynamic behavior of the slave robot
can be defined by equation 11.

\:Is = Gs Us + Ss fs (11)
fs is the force imposed on the slave endpoint and Us is the

inptLt command to the primary controller of the slave drive
system. Gs and Ss are similar to Gm and Sm, and represent
the effects of Us and f s. We will soon learn that the forces
imposed on the slave robot, f 5' are from the environment.

The dynamic behavior of the telerobotic system, the
human arm, and the environment is represented by the
block diagram of Figure 3 where equations 10, 11, 12, and 13
are dynamic models of the master robot, the slave robot, the
human arm, and the environment. In the diagram, H is the
control feedback operating on the contact forces. Note that
there is no cross-feedback between the positions; only the
forces are measured for feedback. This is a fundamental
difference between this control law and previous control
methods. (See [3] for a summary of previous telerobotic
control methods).

In Figure 3, if us, Urn, lIt1, and text are zero (i.e., the
inputs to the master robot and the slave robot are zero, the
human has no intention of moving the master robot, and no
other forces are imposed on the slave) and H11 and H21 are
chosen to be zero, the interaction force between the human
and the master will be zero. If the human decides to move
his hand (i.e., Uh becomes a nonzero value) and Urn, f ext,
H11' and H21 are still zero, a small master motion will
develop as a result of the interaction force between the master
and the human. The master motion will be trivial if 8m has
a small gain, even though the interaction force may not be
small. In other words, the human arm may not have the
strength to overcome the master primary control loop.

The interaction force f m is measured and filtered by
compensator H11 and then used as an input to the master
primary controller. At this point, there is no restriction
placed on the structure and size of H11. The interaction force
f m is also used to drive the slave robot after passing through
the compensator H21. If H11 = H21' the master and slave
motion are the same. Note that the mapping GmH11 acts in
parallel to 8m and thus increases the apparent sensitivity of
the master robot. Figure 3 suggests choosing a large gain for
H11 to increase Ute apparent sensitivity of the master robot.

Similarly, compensator H22 is chosen to generate
compliancy in the slave robot in response to the forces, f s,
imposed on the slave robot endpoint [4]. The interaction

D:.:J'Rm;c B"nRvinr nf t.n" Human Arm .
The human arm dynamic behavior is modeled as a

fun(:tional relationship between a set of inputs and a set of
outputs. Therefore, the internal structures of the model
components are not of concern: the particular dynamics of
neT're conduction, muscle contraction, and central nervous
sys1;em processing are implicitly accounted for in
constructing the dynamic model of the human arm. (Refer
to [B, 10, 15] for a thorough review on various dynamic
moclels of the human arm.)

The human arm is modeled as a non-ideal force
con1;rol system in which the force imposed by the human arm
on the master robot is the result of two inputs. The first input,
Uh, is issued by the human central nervous system; it is
assl1med that the specified form of Uh is not known other than
it iE- human thought deciding to impose a force on the master
robot. The second input is the position of the master robot.
ThtLs, the master robot motion can be thought of as a position
dis1;urbance occurring on the force-controlled human arm.
If the master robot is stationary, the force imposed on the
ma:;ter robot is only a function of commands from the
central nervous system. If the master robot moves, the force
imposed on the master robot is a function not only of the
central nervous system commands but also of the master
robot position, and the amount of force imposed on the master
robot will be different from Uh' The transfer function Sh
maps the master robot position, 1Jrn, into the force imposed
on 'the master robot, f m.

fm = Uh -Sh Ym (12)1

7 One can think of f ext as the equivalent of all the forces on
the slave robot endpoint which do not depend on Ys and other
system variables. One example for f 8xt can be observed
when a second human is holding and maneuvering the
slave endpoint; the force imposed on the slave endpoint by
the human represents f ext. In this article it is assumed that

fext= O.
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forcE' f 5 also affects the master robot as a force reflection
after passing through the compensator H12.

Our goal is to find the H transfer function matrix
such that the satisfaction of equations 1, 2, and 3 is
guaranteed for the system. Designers do not have complete
freec!om in choosing the structure and magnitude of H: the
closed-loop system must remain stable for any chosen
valu,es of H. This controller creates a desired behavior for
the master and slave based on the human arm and
envi:ronment models generated by the computer. The output
of ti:lis controller is then fed to both the master and slave
driv.~ systems. The master robot also interacts physically
with the human; the master motion, then, is partially due to
the 1;ransfer of human power via 5m (shown by double lines
in Figure 3) and partially due to the command generated by
the (:omputer via H. The slave robot interacts physically with
the environment; its motion, then, is partially due to the
transfer of power from the environment through 55 (shown
by double lines) and partially due to the command
genErated by the computer via H. The command to the slave
robot must be such that the total slave maneuver becomes a
desi]~ed maneuver that the person could not achieve alone [5].

human t, f mas er
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By inspection, it can be observed that equations 14, 15, and 16
are not independent and that they satisfy the following

equation:
A Zm
~ = -E (23)

Thus, once ~ and At are specified (via equations 1 and 2),
the designer cannot choose 2m arbitrarily: 2m must be
derived from equation 23. Therefore, the design
specifications must include an arbitrary choice for 2s and
two choices from among the three variables ~, Af' and Zm.
(This confirms that only three relationships are necessary
to sufficiently describe the system behavior.) Here we
choose ~, Af' and Zs as the design specifications8 and solve
three equations 14, 15, and 17 to calculate four unknowns:
P'1' P12, P2', and P22' Once these are calculated, the
members of the H matrix can be found from equations 18
through 21. Since equations 14, 15, and 17 contain four
unknowns, arbitrary assignment of P" leads to the
following solutions for P12' P21' and P22'

Af+AyEP11PI2 = -(24)
AfAyE

AfAII(1+ShPI,)(E+Zs)P21 = -2s(AyE-ArSh) (25)

All E2 (1 + Sh P,,) + Sh Zs (Af + All E P'1)
P22= EZ ( AE-A S) (26)

s y f h
Once P'2' P21' and P22 are found from equations 24,

25, and 26, members of H can be found from equations 18
through 21. In the above method, designers have complete
freedom to select 2s'~' and At. However, the stability of the
closed.loop system in Figure 3 is not guaranteed for all
possible values of 2s, ~, and Af.

Using the Nyquist stability criterion (Appendix A), it
can be found that the following two conditions are needed to
guarantee the stability of the closed.loop system shown in

Figure 3;
1

I P"I < jS;T for all wE [0, 00) (~7)

1 + P1' Sh
I P22 + 8P Sh I > I E I for all wE [0,00) (28)

The left-hand side of equation 28 equals Zs (defined in
equation 17). The stability conditions in inequalities 27 and
28 can be satisfied easily because the left.hand sides of the
inequalities are the designers' choice. We must choose 2s to
be larger than E and P'1 to be smaller than 1/~ in the sense
of magnitude. This presents an interesting property of the
proposed control law: the stability criteria (inequalities 27
and 28) do not limit the designer in choosing the design
specifications described by Af and Ay; the limitation only
restricts the designers in choosing 2s. To summarize, the
designers can choose three functions to describe the system
behavior Af, ~, and Zs; while there is no restriction on the
choice of Af and Ay, 2s (slave impedance) must be larger

than E (inequality 28).

~f.

I
I,
I,
'f -~, ,.xt
'-- environment slave

Figure 3: The major elements of the proposed control'
architecture which creates telerunctioning.

3. STABILITY ANALYSIS
This section describes the design method for the

conlGroller which creates telefunctioning. The design
objective is to select H such that the achievement of the design
spe(:ifications in equations 1, 2, and 3 is guaranteed. Here
we describe a simple control method when a linear system
governs the dynamic behavior of the system; this will lead
the reader to the general solution that we propose. Inspection
of the block diagram of Figure 3 results in the following

equations:
Y5 P21Ay =: -= ~ P E (14)

Ym P11 + u

fs P21 E
~ =: -= -(15)

fm 1+ P22 E

fm 1 +P22 E
= when l.ItI = 0 (16)

Ym P11 + 8P E

fs 1+ P11 Sh
25:= -= P ~ P5 (17)

Ys 22 + U h

wh,~re:
P11 = Gm H11 + 5m (18)

P12 = Gm H12 (19)

P21 = Gs ~1 (20)

P2~~ = Gs H22 + 5s (21)

8P = P11 P22 -P12 P21 (22)

4. EXAMPLE
Consider a one-degree-of-freedom telerobotic system

shown in Figure 4. The master robot is a link powered by a
DC motor. The human holds the handle on the link to
maneuver the master arm. A force sensor between the
handle and the link measures the human contact force. The
slave robot is also a link powered by a DC motor. A mass,
simulating a load, is attached to the slave link. A force
sensor located between the slave robot and the load measures
the load force. Two independent primary stabilizing
control1ers for ilie master robot and for the slave robot have

2m =-

8 One can choose A,.,. Zm. and ZS. OT At. Zm. and Zs as the set

of design specifications.
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been designed to yield the widest bandwidth for the closed-
loop transfer functions. Gm and Gs. while guaranteeing the

.stability of each system in the presence of bounded
unmodeled dynamics. The dominant dynamics for Gm. Gs.
Sm. and 5s representing the closed loop positioning system
are given by equations 29 through 32. The development of the
position controllers for both robots has been omitted for
brevity.

0.95
Gm = rad/rad (29)

The system was maneuvered irregularly by an operator for
10 seconds. The initial positions of the master robot differs
from the initial position of the slave robot. Figure 5 shows
the master and slave positions where \:1m and Ys approach
each other after the initial transition period. Figure 6 depicts
the master and slave forces for the same maneuver where
they are initially equal. After the initial transition period,
the master force, fm, becomes five times less than the slave
force, fs (-fs is plotted in this Figure). Figure 7 shows -fa vs
f m where the slope of 5 confirms that the operator feels 20% of
the slave force.

0\5,Tad/Tad (30)

rad/lbf (31)

rad/lbf (32)

...0.1 5 + 1

0.9
Gs = 0.05 5 + 1

0.03
5m = 0.15+ 1

0.05
55 = 0.05 5 + 1

force
sensor
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Figure 7: The Slave Force vs the Master Force

SUMMARY AND CONCLUSION
This article introduces robotic "telefunctioning.

Telefunctioning facilitates maneuvering of loads by
creating a perpetual sense of the load dynamics for the
operator. We have defmed minimum number of functions
to frame the telefunctioning specifications. The stability of
the system (master robot, slave robot, human, and the load
being manipulated) is analyzed and sufficient conditions
for stability are derived.

Figll1re 4: A One-Degree-or-Freedom Telerobotic System

Note that the master robot has a bandwidth of about 10
rad/i;ec while the slave's bandwidth is about 20 rad/sec.
Since Gm and Gs transform position commands to actual
robot positions, their units are rad/rad. Transfer functions
8m and 8s represent the sensitivity of each system to forces
and their units are rad/lbf.

Based on several experiments, at various
frequencies, an estimate for the human's arm sensitivity is
give:11 in [5, 6]. Equation 34 represents an approximation of
the human arm dynamics in the neighborhood of the Figure
4 configuration when the master robot deviation from the
vertical line is small.

8h = 2.5 (s + 1)2 lbf/rad (33)
The slave robot is employed to maneuver a mass

with an inertia such that:

E = 1iO 82 lbf/rad (34)
The design objective is to design the H matrix such

that. the human feels 1/5 of the force imposed on the slave
whi]e the master and slave positions are equal: At=5 and
Ay=1. No specification for Zs is given; therefore, Zs is
chosen to be 1182 satisfying the second stability condition in

1
inequality 28. P11 is chosen to be 5(1+ 8)2 satisfying the

first stability condition in equality 27. Substituting the
abo."e values into equations 24, 25, and 26 results in transfer
fun,=tions for P'2. P21 and P22 and the H matrix from
equations 18-21.

-1.582 -28 + 8.5
H11 = 47.5(8 + 1)2 (35)

(8+10)(782 + 108 +5)
H12=- 47582(8+1)2 (36)

(8+20)H21 = 0.3182 (8+0.5279)(8+9.4721) (37)

(8+3.12)(8+ 7.43)(82+0.6878+ 0.43) (
H2. = -1882(8+0.5279)(8+9.4721) 38)

APPENDIX A
A sufficient condition for stability of the closed-loop

system of Figure 3 is developed by the Nyquist Theorem [7].
This sufficient condition results in a class of compensators,
H which guarantee the stability of the closed-loop system in
Figure 3. Note that the stability condition derived in this
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section does not give any indication of system performance,
but only ensures a stable system. After some
manipulations, the block diagram of Figure 3 can be
re~resented by the diagram of Figure Al.

.[lUh -r1 .[f m]f exl -"1' I f. ;
, ..

(S 8P + P22)E1 + hS P 1 * 0 for all we [0,00) (A4)
h 11 +

To ensure the truth of A4, one must guarantee that:
(S 8P + P22)EI~- -1<1 for all we [0,00) (A5)

I Sh P11 + 1

Therefore, to ensure the stability of the system in Figure AI,
inequalities A3 and A5 must be guaranteed; these
inequalities are restated as follows:

1 + P11 Sh

'I>IEI forallwe[O,oo) (A6)I P22+ 8PSh

1
I PIli < ish,"

[11m

II.

-for all wE [0, 00) (A7)
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8)

Figure AI: The loop RQ represents tne numan-master
robot and the environment-slave robot physical contact.

An assumption is made that the system in Figure AI
is stable when H = O. The plan is to determine how robust the
system is when the term H is added to the feedback loop. Note
that there are two elements in the feedback loop: R Q
represents the natural feedback loops which occur as a result
of the interaction between the human and master robot and
betwE,en the environment and the slave robot while RGH
reprei)ents the controlled feedback loop. If the controllers in
the feedback loop are eliminated by setting H = 0, the system
reduces to the case where the human wears the master robot
and 1;he slave is in contact with the environment, but
command inputs to the primary controller of both robots are
zero. The goal is to obtain a sufficient stability condition
when H is added to the system. To achieve this, the Nyquist
criterion is used. The following assumptions are made:
1. The closed-loop system in Figure AI is stable when H = o.
This assumption states that the system of human and
master robot taken as a whole and the system of
environment and slave robot taken as a whole remain stable
when no feedback compensator, H, is used in the system.
2. H is populated with stable linear transfer functions.
Therefore, the loop transfer function, R Q, is the same
number of right half-plane poles as (RQ + RGH). For
convE~nience in stability analysis, we assume A=RQ and
B=RQ+RGH

According to the Nyquist criterion, the system shown
in FiIg'Ure AI remains stable as long as the number of anti-
clockwise encirclements of det (I.. B) around the origin of
the s-plane is equal to the number of unstable poles of the loop
transfer function, B. By assumptions 1 and 2, B and A have
the s;ame number of unstable poles. Assuming that the
system is stable when H = 0, the number of encirclements of
the origin by det (I + A) is equal to the number of unstable
poles in A. When compensator H is added to the system, the
number of encirclements of the origin by det (I + B) must be
equal to the number of unstable poles in B in order to
guarantee closed-loop stability. Because of the assumption
that t.he number of unstable poles in B and A is identical, det
(I+B) must have exactly the same number of encirclements
of the origin as det (I + A). In order to guarantee equal
encirclements by det (I + A) and det (I + B), insurance is
need.ed so that det (I + B) does not pass through the origin of
the s-plane for all frequencies.

det (I + RQ + RGH) ..0 for all c.>E [0, 00) (AI)
Substituting R, Q, G, and H from Figure AI into equation .AJ1
and ,calculating the determinant results in:

ShE ,~p + P22E + Sh p,,+ 1.. 0 for all c.>E [0, 00) (A2~

if Sh p,,+ 1.. 0 for all c.>E [0, 00) (A3)

IThen, dividing A2 by A3 results in:


