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Abstruct- This article models a pneumatic system 
consisting of double-acting or single acting cylinder and a 
servovalve with the goal of providing an insight into 
pneumatic design and control requirements for Berkeley 
Exoskeleton (ht<v://wwu..me. berkeZev.edu/heZ/). The modeling 
approach uses the thermodynamic principles of energy and 
mass conservation. We demonstrate that pneumatic 
systems suffer from two effects: unwanted dynamics due to 
gas compressibility and discontinuous nonlinearties in the 
servovalves due to choked flow. To obtain a wide control 
bandwidth, one needs to model these effects thoroughly. 
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I. INTRODUCTION 

A lower limb exoskeleton is a wearable device that 
assists a human to cany a load while walking. The 
machine is anthropomorphic and is attached at various 
points along the operator’s legs and torso such that the 
geometry of the human and the machine approximately 
match one another. The actuation system presented in 
this paper is to power a lower limb exoskeleton. Most of 
the problems associated with the pneumatic actuation 
stem from the gas compressibility and its effects on both 
actuator and servovalve. Similar to hydraulic systems, 
we will derive two sets of equations: one set of equations 
for the actuator and one set of equations for the 
servovalve. These equations in conjunction with the 
equations of motion for the load (e.g. Newton’s law) will 
characterize the dynamic behavior of pneumatic systems. 
We have verified the integrity of the equations through 
extensive experiments. 

11. DERIVATION OF THE DYNAMICS OF THE ACTUATOR 

The purpose of this section is to derive a set of equations for the 
dynamic behavior of the pneumatic cylinder. The system 
consists of a double-acting linear pneumatic cylinder fed 
by a 4-way servo valve as shown in figure 1. Considering 
a control volume that encompasses both chambers of the 
cylinder, the first law of thermodynamics, at the instance 
that chamber 1 is the intake chamber can be written as 
equation 1 : 

Q+k, ( he,, +- l J Z T )  = k2 ( ha, +- V:)+Z+t (1) 
at 

where: 
8 is the heat rate to the control volume. 

Control Volume _. __ 

 FIG.^. PNEUMATIC ACTUATION SYSTEM 

Wis the work rate (power) delivered by the contro 
volume to the piston assembly. 
% is the rate of change of the total energy of the 
at 

control volume (both chambers). 
liz, is the mass flow rate entering the control volume. 
lir, is the mass flow rate exiting the control volume 

0 he,,- is the enthalpy of the gas entering chamber 1. 
v,,, is the velocity of the gas entering chamber 1. 

0 A,, is the enthalpy of the gas exiting chamber 2. 
0 v,, is the velocity of the gas exiting chamber 2. 

A.  Evaluation of % 
at 

The rate of change in kinetic and potential energies of 
the control volume are assumed small in comparison to 
the rate of change of the corresponding intemal energy 
and are therefore omitted. Therefore the rate of change of 
the total energy of the control volume is: 

-=1+2 a(u ) a(u ) aE 
at at at 

where U, and U, are the intemal energies of chamber 1 
and chamber 2, respectively, and are defined by equation 
3 and equation 4 assuming ideal gas is used for the 
system. 
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where VI, TI, p l y  V2, T2 and p2 are volume, temperature 
and density associated with chambers 1 and 2 
respectively. Alternatively equations 3 and 4 can be 
written as: 

U, =(%),v2 

where PI and P2 are the pressures in chambers 1 and 2. 
Cy and R are the speciJic heat at constant volume and the 
gas constant, respectively. Substituting for U1 and U2 
from equations 5 and 6 into equation 2 results in equation 
7 for the rate of change of energy of the control volume. 

at 
(7) 

B. Evaluation of w 

The work rate done on the piston assembly by the gas 
in the pneumatic actuator is: 

where < and V2 are the rates of change of volume of 
chambers 1 and 2. 

C. Evaluation of lit, 

The gas entering to the actuator comes from a reservoir 
(usually an accumulator). Since, the gas in the reservoir 
has zero velocity, its enthalpy is represented by the 
stagnation enthalpy ho. Equation 9 describes the 
relationship between the stagnation enthalpy ho and the 
enthalpy of the gas entering chamber I. 

h , ,  + - V:"w - - h, = C, To (9) 

where TO is the temperature of the gas in the accumulator 
( C p  is specijk heat at constant pressure and is related to 
the aforementioned gas constants by Cp = Cv + R.) 
Similarly, the gas in chamber 2 has a very small velocity 
in comparison with the gas that is exiting through the 
servovalve with the velocity of v,.,. With this 

2 

assumption, equation 10 relates the enthalpy of chamber 
2, h2, to the enthalpy of the gas exiting the valve. 

where T2 is the temperature of the gas in chamber 2. Note 
the duality between equations 9 and 10 in that the intake 
and exhaust enthalpies are based solely on their upstream 
gas temperatures. 

D. Reevaluation of Equation 1 

Substituting for aEl& from equation 7 and for the 
entering and existing energies fiom equations 9 and 10 
into 1 results in equation 11: 

Further substitution for W fiom equation 8 into equation 
11 and simplification of terms results in equation 12. 

Assuming very little heat exchange with its surrounding, 
equation 13 represents the first law for the actuator. 

where k = cp/cv . 
Taking the origin (X= 0) to be the far left end of the 

actuator and the actuator stroke length as L, the chamber 
volumes are: 

VI = A,X i 
Iv2 = A, (L - x) 

The derivatives of the chamber volumes are: 

[V, =-A,X 

Substituting fiom 14 and 15 in equation 13 results in 
equation 16. 
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Equation 16 states how X varies as one modulates the 
mass flow rates h, and h, as a function of the valve 
opening. Derivation of hl and h2 requires the 
derivation of the dynamics of the pneumatic servo vales. 

111. DERIVATION OF DYNAMICS OF THE SERVO VALVES 

The objective of this section is to calculate the mass 
flow rate h, and h, as a function of the valve opening A,  
since A ,  is the control variable. A converging nozzle fed 
from a large reservoir is considered as a good model for 
the valve. This converging passage discharges into 
chamber 1 of the cylinder where the pressure is PI 
(Figure 2). It is assumed that the gas flow is adiabatic 
everywhere in the valve. It is also assumed that the flow 
is isentropic everywhere except across normal shock 
waves. 

The possible flow patterns in the valve can now be 
investigated depending on the values of the cylinder 
pressure, PI and the supply pressure Ps. 

0.53 /e =OS3 (111) 

/&CO 53 (iv) 
0 

Position along the pipe &%Choked Flow 

Fig. 2. A converging nozzle fed fi-om a large reservoir is 
considered as a good model for the valve. Other types (e.g. 
converging-diverging nozzels) were also investigated, 
however the above converging nozzle, through experimental 
observation, was proven to be the most accurate model. 

Case 1: No-flow condition; I: = 1 
P, 

In this case, the cylinder pressure, PI ,  and the supply 
pressure, Po, are equal. No flow takes place in the valve 
from supply pressure to the cylinder. This is a case where 
the load on the piston is so large that the piston will not 
move when the valve is fully open. 

Case 2: Sub-criticalflow regime; 0.53 < 3 < 1 

If the valve is opened slightly, then there will be a flow 
with a constantly decreasing pressure through the nozzle. 
Since the flow is subsonic at the exit plane, the throat 
pressure P, must be the same as the cylinder pressure PI. 
It has been shown experimentally that the pressure in the 
pipe from the valve down to the cylinder is equal to the 
cylinder pressure. So, almost from the end of the valve 
down to the cylinder chamber, the pressure is uniform and 
equal to PI. 

P, 

Case 3: Criticalflow regime -1 P = 0.53 

P, 
As the difference between the supply pressure and the 

cylinder pressure increases, the stream velocity at the 
throat increases, until the point where the flow reaches its 
critical regime. At this point, the velocity of the gas in the 
throat is equal to the speed of sound calculated at the 
throat, and would never get larger even if the pressure 
difference increases. 

Case 4: Supercriticalflow regime 3 < 0.53 
e 

Further reducing in the cylinder pressure will not affect 
the flowing state at the throat because the flow is choked 
in the valve. In this regime, the pressure of the jet leaving 
the nozzle is greater than the cylinder pressure PI. The 
sudden reduction in the pressure causes the jet to expand 
in an explosive fashion. The pressure at throat P, stays 
constant equal to o.53P0. This situation is quite common 
and occurs when there is little load on the piston and 
when PI is much smaller than Po. 

Our experiments also showed that when the gas flow is 
under-choked, the pressure at the throat and the pressure 
in the cylinder are the same. When the gas flow gets 
choked, the pressure at the throat stays constant and equal 
to 0.53P0, whereas the cylinder pressure can decrease 
more. The derivation of hl and h, as function of the gas 
properties at the throat is straightforward. But the 
derivation of li2, and %as a function of the cylinder 
pressure needs to be developed for two cases: choked or 
under-choked gas flow in the servovalve. The values for 
the pressure, density, and temperature of the gas flowing 
through the throat of the valve can be calculated from 
equations 17, 18, and 19, regardless of the flow condition 
in the valve [4]. 
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need to eliminate the only remaining unknown P,. 
order to do this, let's define y as: 

In 

The definition of the mass flow rate is: 

Therefore equation 25 for mass flow rate is written as: 

where p, and v, are the density and velocity of the gas at 
the throat. The velocity of the gas flow at throat can be 
calculated from the definition of the Mach number M, as 
follows: 

Now we have to consider two cases: 

v , = M ; m  Case 1: Under-chokedgas flow 

When the flow is under-choked, the pressure at the 
is throat is equal to the cylinder pressure. Therefore 

given by equation 26: 

Substituting equations 17, 18, 19 and 21 into equation 20 
gives the following expression for flow rate in terms of 
the valve opening, the Mach number of the flow at the 
throat, and the reservoir properties: I 

k f l  

or: Case 2: Chokedgas flow 

stays constant, equal to 0.53P0. In this case, 
constant. 

When the throat gets choked, the pressure at the throat 
stays 

The value of h, depends on the exact knowledge of the 
Mach number at throat M,, and the valve opening A,. 
Inverting equation 17 gives the expression of the Mach 
number as a function of the pressure at the throat Pr: 

Therefore, the expression of the mass flow rate for gas 
going into the cylinder depends on two cases, whether the 
flow is choked or under-choked. Expression 30 
summarizes the above results: 

Substituting for M1 from equation 24 into equation 23 
results in equation 25 for mass flow rate as a function of 
the gas properties in the reservoir, the pressure at throat, 
and the throat opening: 

where, if 4 > 0 .534  (under-choked), then 

and, if 4 2 0.534, (choked), then 
. 

Y, = 0.58 
Expression 25 is valid for gas going in the cylinder, 

whether the flow is choked or under-choked. We now 
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This factor 
throat opening in the mass flow rate expression. 

but the second chamber is now taken as a “reservoir”. 

can be illustrated as part of the ‘gain’ of the 

The outgoing mass flow rate can be derived similarly, 

7where, if p,, > 0.53p, (under-choked), then 

md, if p,. 2 0.538 (choked), then 

y2 = 0.58 

To stay consistent with the conventions we have made 
before, we will consider A, as an algebraic area, which 
will be positive for gas going in and out of the actuator. 

w. COMPLETE DYNAMIC EQUATIONS OF THE ACTUATOR 

AND VALVE 

The goal of this section is to summarize the necessary 
equations for control of a pneumatic system. The 
equation for actuator force is expressed as: 

Newton ’s Law: 

JX=P,A, -P2A2 
where J is the load mass. 

Actuator’s Equation 

Valve Equation: 

Equations 30 and 3 1 or one can use equation 33: 

(33) 

where and can be calculated from equations 26 and 
28 depending on values of 3 and !& . 

8 4  

For example, for force control, assuming 
F =eq-p,4, equations 16 and 33 result in the 
following equation for F as a function of valve opening, 
A,: 

This paper is focusing on the proper dynamic equations 
for the valves and actuators only; there are a great number 
of control algorithms that can be found to control the 
above system. 

V. DESIGN EQUATIONS 

This section describes some interesting results that can 
be used for design and component selection. Usually in 
design of pneumatic systems, practitioners face the 
following question: For a given supply pressure, how 
much gas flow does one need to deliver a particular 
w‘ average power? 

Equation 13 at steady-state where i, = m 2  and 
4 = P2 = 0 can be written as: 

The mass flow rate from compressor is: 

Substituting for lit, from equation 36 into equation 35 
results in the following equation for volumetric flow rate 

Qo: 

(3 7) 

The term Q$o is called the “hydraulic power”-even 
though we are dealing with gas. Hydraulic power means 
the energy associated with the gas without considering its 
sensible energy. Equation 38 indicates that from the 
hydraulic power coming to the actuator (&Po), the 
amount of QOpr is wasted. In other words, an actuator 
receives energy of QOpo, but since it releases gas at 
pressure of Pz it therefore wastes QOpZ. 

Example: To extract 1 Hp work from a supply pressure 
of 250 psig, how much gas flow is needed? One needs to 
have a good guess for Pz. Large values of Pz indicate 
large losses. A good dynamic simulation of the system 
with a proper controller usually leads for a good estimate 
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for Pz. 
needed to produce 1 Hp is: 

Assuming Pt is about half of Po, the flow rate 

(39) $ (1 Hp)(5505.12$) in3 
Q,, =-= = 52.8 - 

G - P ,  25Opsig-125psig sec 

Evaluating the hydraulic power of the above example 
shows that 1 Hp work is lost due to backpressure in the 
cylinder. Minimizing these losses increases eficiency of 
the system with regards to the hydraulic power. Note that 
the above method only gives a size for the average flow 
rate. The peak flow rate is assigned by accumulator 
design. 

VII. SINGLE-ACTJNG ACTUATOR 

The same methodology used to derive equation 34 for a 
double-acting actuator is also used for single-acting 
actuators. The main difference is that chamber 2 is 
always at atmospheric pressure. Considering the single 
acting pneumatic actuator of figure 3 and the 
nomenclature shown below, the following set of 
equations can be used to describe the cylinder behavior. 

pp : Cylinder Pressure 
0 p, , T, : Supply Pressure and Temperature 

0 A ~ :  Piston Area 
0 A, : Servovalve opening 

X ,  : Piston position 
0 p,, : Atmospheric Pressure 

From Reservoir 
Pa Ta J% 

Fig. 3. Single Chamber Pneumatic Actuation System 

Gas aoinp into cvlinder 

If p, > 0.538 (under-choked) then 
I 

k+I 

P, 

Gas leaving the cvlinder 

kR PpXp +WpXp = m-T, 
A, 

m =  y. l jJF.p, .A,  k 

If p,. > 0.535 (under-choked) then 

If p,, 5 0 . 5 3 ~ ~  (choked) then y = 0.58 

And Newton’s law: 

J 2, = A,(P, -Po,,,,) 
where J is the load mass. 

(42) 

(43) 

VIII. CONCLUSIONS 

This article has presented the dynamic models for a 
pneumatic cylinder and servovalve and incorporated them 
together to develop criteria for both design and conGol of 
an exoskeleton system being designed at Berkeley. The 
equations have the most important characteristics needed 
to model pneumatic systems. Equations 16, 30 and 31 
represent double acting cylinder and valve models. 
Equations 40-43 model single acting cylinders and their 
servovalves. Equation 38 can be used for design and 
selection process. The work is still going on. 
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