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1. Abstract
One method of model. based compensator design for linear

multillariable systems consists of state-feedback design and
obserller design /1/. A key step in recent work ,in
multillariable synthesis inlloilles selecting an obserller gain so
the final loop-lransfer function is the same as the state-
feedback loop-transfer function IiI, /6J. This is called Loop.
Transfer Recollery (LTR). This paper shows how identification
of the eigenstructure of the compensators that achielle LTR
makes possible a design procedure for obserller gain /15].
This procedure is based on the eigenstructure assignment of
the obBerllerB. The Bufficient condition for LTR and the
stability of the closed-loop BYBtem iB that the plant be
minimum-phase. The limitation of this method might arise
when the plant hoB multiple transmission zeros.

<Ii transmission zeros of (A,B,G)
G state-feedback gain
K(s) transfer functioD matrix of the compensator
p positive scalar
VjT left eigenvector of (A-HC)
Uj right eigenvector of (A-BG)
W square non-singular m X m matrix
z.T zero direction of the transmission zero
-~. T input direction of the transmission zero

I
I maximum number of the finite transmission zeros
XjT left eigenvector of (A-BG-HC)
~ oils) open-loop characteristic equation of the plant
~ c1(S) closed-loop characteristic equation of the observer
n order of the system
m rank of matrices Band C

Pis) precompensator

3. Background
We will deal with the standard feedback configuration

shown in Figure 3-1, which consists of: plant model G (s);
p

compensator K(s), forced by command r(t); measurement
noise n(t); and the disturbances dj(t) and do(t). Tbe
precompensator, P(s), is used to filter the input for command

following.

2. Introduction
Historically, the L TR method is the consequence of

attempts by Doyle and Stein to improve the robustness of
linear quadratic gaussian (LQG) regulators [51. 141. However,
the method has more general applications than to the
robustness of the LQG regulators [61. In their seminal work,
Doyle and Stein address the problem of finding the steady-
state observer gain that assures the recovery or the loop
transfer function resulting from full state reed back. First,
they demonstrate a key lemma that gives a sufficient
condition for the steady-state observer gain such that L TR
takes place. To compute the gain, they show that the
infinite time-horizon Kalman filter formalism with "small"
white measurement-noise covariance yields an observer gain
that satisfies the sufficient condition for loop transfer
recovery. In this paper, we present a method for computing
observer gain that obviates the need for Kalman filter
formalism. Tbe goal or this paper is to analyze the
eigenstructure properties or the L TR method for the general
class or feedback control systems that use model-based
compensators. Arter examining the eigenstructure or L TR, a
design methodology for L TR via eigenstructure assignment
will be given.

(1)

(2)
Nomenclature

x(t) = A x(t) + 8 u(t) + 8 dj(t)

fIt) = C x(t) + do(t) + nIt)

where:
x(t)ERD, u(t),y(t),dj(t),do(t) and n(t) ERm
lA, 81 is a stabilizable (controllable) pair
lA, C] is a detectable (observable) pair
rGnk (8) = rGnk (C) = m

A, B& C d.&do xlt),u(t)&y(t)

x(t)&y(t)

plant parameters
input and output disturbances

...states, input and output or the system
states and output or the observer
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Once we specify the plant model, Gp(s), we must find K(s)
so that: 1) the nominal feedback design,
y(s)=Gp(s)[Imm + K(s)Gp(s)j-l dj(s), is stable; 2) the
p~rturb~ system in the presence of bounded unstructured
uncertainties is stable; 3) application-d~pend~nt design
specifications are achieved. The design specifications can be
expressed as frequency-dependent constraints on the loop
transfer function, K(s)Gp(s). The standard practice is to
shape the loop transfer function, K(s)Gp(S), so it does not
violate the frequency-dependent constraints 14]. The loop-
shaping problem can be considered to be a design trade-off
among performance objectives, stability in the face of
unstructured uncertainties [13, 231, and performance
limitations imposed by the gain/phase relationship. Here we
assume that nIt) is a noise signal that operates over a
frequency range beyond the frequency range of r(t), dj(t) and
dolt). We also use a precompensator, P(s), to shape the
input for command following. Therefore, the performance
objectives are considered as only input disturbance rejection
over a bounded frequency range. The design specifications
may be frequency-dependent constraints on Gp(s)K(s), which
is the loop transfer function broken at the output of the
plant, rather than on K(s)Gp(s), which is the loop transfer
function broken at the input to the plant. Applying the
d~sign specifications to G (s)K(s) implies rejection of output
disturbances. Since Doyfe and Stein first applied L TR to
the loop transfer function, K(s)Gp(s), for consistency and
continuity we will also assume throughout this article that
all design specifications apply to K(s)Gp(s).

Figure 3-3: Closed-Loop System

given by equation 4.

A + B G + H C ,1 H (4)K(s) = G ( s

The idea behind observer design is to find the steady-state
gain, H, such that the loop transfer function, K(s)Gp(s) ,
in Figure 3-1 maintains the same loop shape (for a bounded
frequency range) that G(sInn-A)-lB achieved via state-
feedback design in the first stage. A technique for designing
H to meet this criterion was offered by Doyle and Stein [41.
Since by this method, K(s)Gp(s) preserves the loop-shape
achieved by G(sInn-A)-lB, the final design in Figure
3-1 meets the specifications that were already met by state-
feedback design. (The title "loop transfer recovery" comes
from this idea.) For stability of the observer, equation
5 must also be satisfied.One method of designing K(s) consists of two stages. The

first stage concerns state-feedback design. A state-feedbaek
gain, G, is designed so that the loop transfer function,

G(sInn-A)-lB , which is shown in Figure 3-2, meets the
frequency-dependent design specifications and satisfies
equation 3 to guarantee stability.

0 ,",
~ -~--~

-I

= OnT,v!( ~i Inn -A + H C i = I, 2, (5)

V.T -I: °,
I

real ( 1"; < 0

xIII~ B ~i and v r are the observer eigenvalue and left eigenvector,
respectively. Observability of IA,CI guarantees the existence
of H in equation 5. The following lemma, which is proved
by Doyle and Stein [4], is central to the design of H:

~

~

Figure 3-2: State-Feedback Configuration
~) -BW (6)

P
').,;1, -A+BG)u:=O. i = I, 2, (3)

then K(s), liB given by equlltion 4, IIpprollcheB pointwise
towllrd expression 1:real ( ). Ui ~ O,< 0

(7)G (slnn-A)-l B ( C (slnn-A)-l B 1-1,

and since Gp(S) = C (slon-Arl B (8)

then K(s) Gp(S) will approach G (sloo-A)"1 B pointwise.

The procedure requires only that H be stabilizing and
have the asymptotic characteristic of equation 6. Doyle and
Stein suggested one way to meet this requirement: a steady-
state Kalman filter gain 1121 with very small measurement-
noise covariance. Now suppose we choose H with the

following structure:

H = p B W (9)

)..j is the closed-loop state-feedback eig~nvalue, while Ui is the
n X 1 right closed-loop eigenvector of the system.
Controllability of IA.B] guarantees the existence of G in
equation 3. At this stage, one can determine whether or not
state-feedback design can meet the design specirications. In
this paper, we assume that G is selected so that equation
3 is satisfied and the loop transfer function, G(sInn-A)-lB.
which is shown in Figure 3-2 meets the desired rrequency-
domain design specification. In the second stage or the
compensator design, an observer is designed to make the
rirst stage realizable 114. 251. The observer design is not
involved in meeting the specirications ror the loop transrer
runction since all design specifications have been met by the
state reed back gain. G.
The observer has the structure of the Kalman rilter.
Combin-ing the state-reed back and observer designs (Figure
3-3) yields the unique compensator transrer-runction matrix where W is any non-singular m X m matrix and p is a scalar.

If H is cho8en 8uch that limit 6 i8 true 08 8calar

approache8 infinity for any non-8ingular m X m W-matriz ,
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It can be shown (by the definition of the limit) that the
structure of H chosen in equation 9 satisfies the limit in
equation 6 as p approaches infinity. In other words, as p
approaches infinity, 'H -pBW' results in 'Hip -BW'.
(The reverse is not true.) Since the structure of H given in
equation 9 satisfies the limit in 6, then if H is chosen to be
pBW, K(s)G (s) will approach G(sInn-AjIB pointwise, as p
approaches i~finity. Note that the structure of H given by
equation 9 does not necessarily yield a stable observer. We
choose H to be pBW throughout this paper. The asymptotic
finite eigenstructures of both forms given by 9 and 6 are the
same, while the asymptotic infinite eigenstructures are usually
dirferent. The form in equation 9 usually yields an unstable
infinite eigenstructure.

'I/(s) is I. All transmission zeros or the plant, including the
ones that are eq~~1 to the eigenvalues or the plant (which
may even be the input-decoupling and/or output-decoupling
zeros or the system), are roots or 'I/(s) and also satisry
inequality 10 and equation 11. The equality or equations
13 and 11 can be shown by carerul use or Schur's equality

[81.

4. Asymptotic Eigenstructure Properties of
the L TR Method

We will now explore some eigenstructure properties for
L TR when the observer gain satisfies equation 9. Knowing
the eigenstructure properties of the compensator, we will
dE'velop a method for designing H via eigenstructure
assignment of the observE'r. Tbe following theorem gives the
eigenstructure properties of the observer when H is chosen
according to E'quation 9. Part 1 of the theorem is proved
differently in reference 12], and can also be considered to be
a special result of tbE' multivariable root locus given by
references 118, 24, 11, 1°]. The second part of the theorem
is the result we will use in the design process.

Although this paper is not an exposition or the properties
or the transmission zeros or a plant, berore stating the
theorem, we will remind readers or some definitions and
concepts about this matter. (For more inrormation and
properties or the transmission zeros, see rererences

122, 3, 10].) The transmission zeros or a square plant are
defined to be the set or complex numbers s. that satisryinequality 10. I Theorem

Con8ider the 8quare linear ob8erller in Figure 4-1

1

5.1 -A
Inn (10)

rank < n+m
(14)

(15)The lJecessary and sufficient condition for the truth or
inequality 10 is given by equation 11.

A "
x(t) = A x(t) + H e(t) + B u(t)

"e(t) = .C x(t) + y(t)

"
x(t)ERD u(t) and y(t) ERm

with rank (8) = rank (C) = m[SiInn

C

-A B
del = 0 (11) Then if H is chosen so that.

°mm

H=pBW (16)Equation 11 yields I finite transmission zeros (I~n-m). The
remaining (n-l) transmission zeros are at infinity. For each
finite transmission zero, there is one non-zero left null-vector
IziT -wiT] (for i=I,2,...,I) such that:

where W ia any non-aingular aquare matriz ond p ia a acalar

approaching 00, then the following atatementa are true:

z; ow;1 1) The finite cl08ed-loop eigenvalue8 of (A-HC), l1i'

approach finite tran8mi88ion zer08 of the plant, 8, If the
linear plant [A,B,C] has I finite tran8mi88ion zer08: (I~D-m),

then (A-HC) will have I finite eigenvalue8. The remaining

cl08ed-loop eigenvalue8 approach infinity at any angle.

T=° +n m (12)

where: [ZiT

2) The left closed-loop eigenvector v ~ (i=I,2, 1)
associated with the finite closed-loop eigenvalue ~. approaches

1
z. T. which satisfies equation 17.

1

w!is an mXl vector, and z!is an nXI vector. z.T is called
I I I

left zero direction of the transmission zeros of the plant. If
the left eigenvector and left zero direction associated with a
pair of equal-valued eigenvalue and transmission zero are
equal, then Sj is an uncontrollable mode of the system.
These transmission zeros are called "input decoupling zeros"
[17]. Similarly, if the right eigenvector and the right zero

direction associated with an equal-valued eigenvalue and
transmission zero are equal, then s. is an unobservable mode

I

of the system. These transmission zeros are called "output
decoupling zeros." A similar definition for the transmission
zeros of a square plant is given by reference [121; all complex
numbers that are roots of lII(s) in the equation:

lII(s)

IzT owTI s.1 -AInn T= °n+m (17):j
zT -wTI ~ °n+m'

del Gp(S) =

~ol(S)

are transmission zeros or the plant.
open-loop characteristic equation.

(13)

w; is an m X 1 vector and z; is an n X 1 vector. If si is not
equal to any eigenvalue of A, then z; can be computed from
equation 17, and the following expression for v; (i=I,2,...,I)
"an be obtained:

v;=w;IC(Sjlnn-Aj"lj (18)

'" oils) is the nth-order
The maximum order or where w! (i=I,2,...,I) can be calculated from equation 19.
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Figure ~%: Clos,ed-Loop Observer Configuration

Equation 21 relates the open-loop
characteristic equations !16. 21].

and closed-loop

Figure 4-1: Closed-Loop Observer

=~
~ol(S)

del [ Inn + C (sInn-A)-1 p B W
where:

(21)Interpretation. This theorem identifies the asymptotic
locations or finite closed-loop eigenvalues and left
eigenvectors or the observer. As p approaches a large
number, I (ror I$n-m) closed-loop eigenvalues will approach
finite transmission zeros or the plant, and (n-l) closed-loop
eigenvalues will approaeh infinity at any angle. Since
conventional practice in complex variable work is to regard a
function as having an equal number or poles and zeros when
the zeros at infinity are included, one can claim that all
closed-loop eigenvalues approach the transmission zeros or the
plant. Equation 17 states that [vr -wr I is confined in
the left null space or the given matrix in equation 17 as p
approaches inrinity. In other words, the left null space or
the matrix given in equation 17 assigns a subspace for
limiting location or I vr -wrl when p approaches infinity.
Ir si is not equal to any eigenvalues or A, the limiting
location or vr can be interpreted dirrerently. Equation
18 states that the left eigenvector v:r is confined to a sub-
"pace spanned by the rows or (C(~iInn-A)-ll ir Sj is not
equal to any eigenvalues or A. This sub-space is or
dimension equal to the rank or C. Thererore, the number or
independent output variables determines how large the sub-
space corresponding to the left closed-loop eigenvector can
be. The orientation or each sub-space associated with each
left closed-loop eigenvector vr depends on the open-loop
dynamics or the system [A,CI and the closed-loop observer
eigenvalue 11, Construction or the left closed-loop
eigenvectors in their allowable m-dimensional sub-space in CD
is the exact freedom that is offered by observer design
b~yond pol~ placement [9, 19, 20, 71. The second part or
the theorem identifies the asymptotic m-dimensional sub-
space in Rn that confines the left clos~d-loop eigenvector vr.
The choice or w:r in equation 18 allows the designer to
construct ~ach n-dim~nsional left closed-loop eigenvector in
its allowable m-dimensional sub-space. As p approaches a
large number, then wr approaches the left null vector or
G (sJ in equation 19; consequently, ~ach left closed-loop
ei~envector vr approaches a final value in its allowable sub-
space given by expression 18.

~ ,,(Is) = closed-loop characteristic equation or
the system in Figure 4-2.

~ ol(S) = open-loop characteristic equation or
the system in Figure 4-2.

From matrix theory, equality 22 is true [8].

del! Imm + C (sInn-A)-l p

traceIC(sInn-Ajl pBWj+ ...

BWI=Imm+

+detIC(sInn-A)-lpBWj (22)

As p approaches 00, the last term of equation 22 grows
faster than the other terms. Therefore, approximation 23 is
true.

dell Imm + C(sInn-Arl pBWI~deIIC(sInn-A)-1 pBW) (23)

Considering approximation 23, equation 21 can be written as:

~cl(s)
del I C (sl -A)-l p B WI"'" -(24)

nn ~
( )01 s

or equivalently:

~ol(S)del (Gp(s)1 del Ip WI .". -(25)

~ol(s)

Since del [p WI ~ 0, comparing equations 13 and 25 shows
that the roots or l/I(s) and ~ol(s) are the same. In other
words, ~ ol(s) produces all the transmission zeros or the plant,
including the ones that' are equal to the eigenvalues or A,
which can even be decoupling zeros.

Part 2: When H approaches its asymptotic value, the
eig~s of (A-HC) can no longer be moved via matrix C.
This is true because the eigenvalues of (A-HC) are at their
limiting locations (i.e., transmission zeros of the plant).
Therefore, [(A-HC), B, CI must have unobservable or
uncontrollable modes. Since [(A-HC), C] is an observable
pair and H is expressed as pBW, I(A-HC), B] must be an
uncontrollable pair. Since [(A-HC), BI is an uncontrollable
pair, equations 26 and 27 are true [171.

Proof:

Part 1: H is chosen according to equation 16. The hlock
dia~f the closed-loop observer is shown in Figure 4-2.
The loop transfer function at the plant output is given by
expression 20.

= D.Tv:r ( ~. I -A + H Clinn

vTB = 0 T
1 m

= 1, 2, ..., I (26)

(27)

A )-1 P B W (20)C ( 8
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~. is the closed-loop observer eigenvalue, and v:r is the
I I

corresponding lert eigenvector. Equation 27 states that the
lert closed-loop eigenvector v:r rrom equation 26 is in the lert

I
null space or 8 and cannot be arrected by the input. Each
closed-loop eigenvector v[ (ror i=l,2,...,I) can be expressed by
equation 28.

Substituting H Cor (pBW) in inequality 35 results in
inequality 36.

v:r(~.I -A ) -w:rC=OT
I I 00 I 0

where: w:r = -v:rH
I I

(28)

(29)
-°; Inn-A+BG+HC

G
rank (36)< n+mCombining equation 28 and equation 27 yields equation 30.

(Note that Si=~i')

The complex number <1j that satisfies inequality 36 is a
transmission zero or K(s) as given by equation 4. Thererore,
K(s) and G(sInn-A)-lB have equal transmission zeros. U
G(sInn-A)-lB does not have any finite transmission zeros,
then K(s) will not have any finite transmission zeros.

Corollary 2: II p approacheB 00, then alt the eigenvatueB 01

the compenBator K(s) wilt approach the tranBmiBBion zerOB

(including the oneB at inlinity) 01 the plant, and the lelt

eigenvectorB 01 (A-BG-HC), x~ wilt approach z~ where z:r and
I I I

s. (i=I,2,...,I) BatiBlu equation 37.
Iv; = w; C ( Sj Inn' A )-1 i = 1,2, ..., I (31)

z! ow!! -Awhere w:r can be comput~d from equation 32
1 T=0 n+m (37)

z! -w! j .J. 0 T
1 1 r m+o

In other words, the eigenvalues of the compensator cancel out

the transmission zeros of the plant.

wT! C ( si I nn -A )-1 B I = GmT, i=I,2,...,1 (32)

wbere: w! oJ. 0 T
.T m

Equation 31 sbows tbat tbe left eigenvectors acbievable for
tbe closed-loop observer are confined to tbe m-dimensional
sub-spaces determined by tbeir associated eigenvalues and

open-loop dynamics lA, CI.
Comment: As p approacbes 00, tbe I eigenvalues of (A-HC)

cancel out tbe I finite transmission zeros of tbe plant. A
cancellation of an equal-valued closed-loop eigenvalue of the
system witb a transmission zero bappens if tbe left closed-
loop eigenvector of tbe system is equal to the left zero
direction, z,T, associated witb tbe transmission zero in

I

equation 17. By cancelling we mean they will not appear as
poles in the closed-loop transfer function matrix,
C[sInn-A+HCj-1B. The transmission zeros of [A, B, C] are
the same as those of [(A-HC). B, CI. because transmission
zeros do not cbange under feedback. As p approaches
infinity, tbe transmission zeros of [(A-HC), B, CI turn into
input decoupling zeros, because tbe system of I(A-HC). B. C]
is not controllable at these modes 117].

Proof: The transmission zeros or the plant are the set or
complex numbers Sj that satisry inequality 31. Post-
multiplying the matrix in equation 31 by the non-singular
matrix:

[~D
(38)0am

'mm

will yield the following equation, which can then be solved
to find the finite transmission zeros of the plant:

Corollary T: The finite transmission zeros of K(s) are the
same as the finite transmission zeros of G(sIoo-A)-IB.

Proof The transmission zeros of G(sIoo-ArIB are the
complex values "j that satisfy the following inequality:

[ :'"
A B (33)

rank < n+m
ammo

Post-multiplying the matrix in inequality 33 by the non-
singular matrix:

0 (34)

:n:]
Ann

G+pWC

If Sj is not equal to any eigenvalue of A, then from equation
30 we can find an expression for the left closed-loop
eigenvector of A:
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WT= -v:rH
1 I

where: (42)5. Comments
1) According to corollary 2, as p approaches 00, the

eigenvalues or K(s) will cancel out the transmission zeros or
the plant. According to corollary 1, as p approaches 00, the
transmission zeros or K(s) will approach the transmission
zeros or G(sInn-A)-lB. Since the number or transmission
zeros or two cascaded systems (K(s) and Gp(s)) is the sum or
the number or transmission zeros or both systems, the
transmission zeros or K(s)G~(s) are the same as the
transmission zeros or G(sI n-A)-lB. Similar arguments can be
given ror the poles or K(s)Gp(s). The poles or K(s) cancel
out the transmission zeros or the plant; thererore, the poles
or K(s)Gp(S) will be the same as poles or G(sl n-A)-lB. This
argument does not prove the equality or G~Inn-A)-lB and
K(s)Gp(S) as p approaches 00. Proor or the pointwise equality
or K(s)Gp(s) and G(sInn-A)-lB is best shown by Doyle and
Stein in [4]. The above comment concerning pole-zero
cancellation explains the eigenstructure mechanism ror L TR.
Since pole placement and eigenvector construction in the
allowable sub-space prescribes a unique value ror H, we plan
to design the observer gain ror the L TR via pole placement
and lert eigenvector construction.

The following steps will lead a designer toward observer
design for the recovery procedure:

1) Use equation 17 to compute the I target locations or
the complex rinite eigenvalues or the observer,s., and I lert
null vectors or I z! -w! I .~i must be selected to be
equal to s, Tbe lert closed-loop eigenvector or the observer,
v ~ must be selected to be equal to z~ Ir s. is not equal to

1 1 1

any eigenvalue or A, use equations 18 and 19 to compute
the I lert closed-loop eigenvectors v! and w!. w! identifies

I I I

the location or the lert closed-loop eigenvector in its
allowable sub-space. Tbis step terminates the construction or
rinite eigenstructure or the observer.

2) Place the remaining (n-l) eigenvalues of (A-HC) at
locations farther than the finite transmission zeros of the
plant. Use equation 41 to achieve (n-l) values for v r. The

w! for infinite modes are arbitrary and have little
I

importance, because their corresponding eigenvalues are
selected far in the left half complex plane.

2) The asymptotic finite eigenstructure for H in both
equations 6 and 9 are the same, but the asymptotic infinite
eigenstructures are usually different. The form of H given
by equation 9 is rarely stabilizing. Since both forms
guarantee the pointwise approach of K(s)G (s) to G(sI -A)B,
it can be deduced that the pointwise app~oach of K(s;Gp(s)
to G(sInn-A)B occurs whenever the asymptotic finite
eigenstructure is the same as that given by the theorem.
Hence, combining any such finite eigenstructure with any
stable infinite eigenstructure will result in the approach of
K(s)Gp(s) to G(sInn-A)B in a stable sense.

3) Since

y!H = -w!
I I

then:

.yT1

yT2

(43)i = I, 2, D

] H = -[ :~] (44)

3) Difficulty in using L TR will arise if the plant haa
some right half-plane zeros (non-minimum phase plant). In
our proposed procedure for L TR, one should place the
eigenvalues of (A-HC) at the transmission zeros of the plant.
If the plant is non-minimum phase, one would place some
eigenvalues of (A-HC) on the right half-plane. The closed-
loop system will not be stable if any eigenvalues of (A-HC)
are on the right half-plane. According to the separation
theorem, tbe eigenvalues of (A-HC) are also the eigenvalues
of the closed-loop system. Therefore, the sufficient condition
for L TR and the stability of the closed-loop system is that
the plant be minimum-phase. If the plant is non-minimum
phase, one should consider the mirror images of the right
half-plane zeros as target locations for eigenvalues of (A-HC).
In such cases, loop transfer recovery is not guaranteed, but
the closed-loop system will be stable.

yT WT
n ~n

Use equation 45 to compute H.

-,-I
yT wTI 1

wT2

(45)H=-

yT
2

6. Design Method
For observer design, we place I finite eigenvalues of

(A-HC) at rinite transmission zeros or tbe plant. The lert
closed-loop eigenvector v.T associated with the rinite modes
must be constructed such that IVjT -w;r] is in the left null
space or the matrix given by equation 17. The remaining
(n-l) closed-loop eigenvalues should be placed rar in the left
hair-plane. Note that the farther the (n-l) infinite
eigenvalues of (A-HC) are located from the imaginary axis,
the closer K(s)G (s) will be to G(slnn-A)B .This is shown in
the example. The left closed-loop eigenvectors associated
with the infinite modes can be computed via equation 41.

~T I ~T
D D

The independence of the n left closed-loop eigenvectors v:r is
1

a necessary condition to use eigenstructure assignment for
L TR. If the left closed-loop eigenvectors are not
independent, our approach fails and one must use Doyle and
Stein's approach to recover the loop transfer function. The
dtpendency of the left eigenvectors might arise if multiple
finite transmission zeros result in equation 17. If degeneracy
of the matrix in equation 17 is equal to the multiplicity of a
transmission zero, the existence of n independent finite left
closed-loop eigenvectors is guaranteed.

7. Example
Consider the following example:

0
0

o.
0

1
0

o.
0

O

J1. O.

O.

B =

Oo

J4.
0

1
1
0

A r1T T ~ ( Iv. = w. V ~.
I I , nn

i = 1+1, 1+2, (41)
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Suppose we are given G such that the closed-loop poles are
at -19.35, -1,76, -5.57 and -6.12 :

G = 4.7234 3.4265 0.9923

1.1491 08519 0.2633

Eigenv~lues of'
K(s)

I 

Closed loop

I eigenvalues

Tra.nsmission
zeros of K(s)

-30.5672

-24.2387

-1.0000

-0.2500

-2.8091

-1.2662

-00

-00

I

lk! :
1k2 -
Ika =

'lk. =

-49.4030 +10.4478i

-49.4030 -10.4478i

-1.0000

-0.2500

-3.6734

-1.3311

-00

-00

I ~1 = -1I 

~2 = -.25

~a = -30

1~4 = -36

-115.40 + 20.46i

-115.40 -20.46i
-1.0000
-0.25

-4.0855

-1.3551

-00

-00

\111 = -1

112 = -.

113 = -9.~. 

= -1

Table 7-1: Poles and Zeros of K(s)

the plant be minimum-phase. The limitation of this method
might arise when the plant has multiple finite transmission
zeros, and n left independent closed-loop eigenvector cannot
b~ constructed.

Acknowledgements

0.6631
J0.1952

Using equation 19, the finite transmission zeros si and the
associated left null-vector directions w! can be computed.
~I and ~2 are selected to be equal to sl and s2'

~I = -1, ~2 = -.25, wI = [1 O],.~ = [0 1].

Using equation 18, the left closed-loop eigenvector associated
with the finite modes can be computed:

vI = [-1.00 0.00 0.00 0.00]

v~ = [ 0.00 -4.00 0.00 0.00]

We place the other two eigenvalues of (A-HC) in the left
half-plane as far as possible. The directions of w 3 T and w 4 T

do not matter because the associated eigenvalues are far
away. Figure 7-1 shows that the farther away from the
imaginary axis the two infinite eigenvalues of (A-HC) are,
the closer K(s)Gp(s) will be to G(s(nn-A,IB. Assuming:

" = -30 " = -36 .1 = [ 1 0 ] .1 = [ 0 1 ]'"3 .'"4 ' 3 .4

and using equation 41, the left eigenvectors associated with
infinite modes can be computed:

vi = [-0.0333 0.0000 -0.0322

V~ = [ 0.0000 -0.0278 0.0000

Using equation 45, H can be computed:

0.0000

-0.1103

: 

1.0000
I 0.0000

\30.0000
0.0000

0.0000
0.2500
0.0000
0.9000

H =

Tbe rinite transmission zeros or G(sInn-ArIB are located at
-4.3270 and -1.3675. Table 7-1 shows that the transmission
zeros or K(s) approach the transmission zeros or G(sInn-A)-IB
as 113 and 114 move rartber into the lert hair complex plane
(corollary 1). Table 7-1 also shows that the rartber 113 and
114 are rrom the imaginary axis, the closer the eigenvalues or
K(s) will be to the transmission zeros or the plant (corollary

2).

Maximum aDd MiDimum SiDgular Values or

G(s(o-A)-IB

-

-1

-.25

-10

-12
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