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1. Abstract

One method of model-based compensator design for linear
multivariable systems consists of state-feedback design and
observer design [1]. A key step in recent work jin
multivariable synthesis involves selecting an observer gain so
the final loop-transfer function is the some as the state-
feedback loop-transfer function [4], [6]. This is called Loop-
Transfer Recovery (LTR). This paper shows how identification
of the eigensiructure of the compensators that achieve LTR
maokes possible a design procedure for observer gain [15].
This procedure is based on the eigensiruclure assignment of
the observers. The sufficient condition for LTR and the
stability of the closed-loop system 18 that the plant be
minimum-phase.  The limitation of this method might arige
when the plant has multiple transmission zeros,

2. Introduction

Historically, the LTR method is the consequence of
attempts by Doyle and Stein to improve the robustness of
linear quadratic gaussian (LQG) regulators [5], [4]. However,
the method has more general applications than to the
robustness of the LQG regulators [6]. In their seminal work,
Doyle and Stein address the problem of finding the steady-
state observer gain that assures the recovery of the loop
transfer function resulting from full state feedback. First,
they demonstrate a key lemma that gives a sufficient
condition for the steady-state observer gain such that LTR
takes place. To compute the gain, they show that the
infinite time-horizon Kalman filter formalism with ‘small”
white measurement-noise covariance yields an observer gain
that satisfies the sufficient coadition for loop transfer
recovery. In this paper, we present a method for computing
observer gain that obviates the need for Kalman filter
formalism. The goal of this paper is to analyze the
eigenstructure properties of the LTR method for the general
class of feedback control systems that use model-based
compensators. After examining the eigenstructure of LTR, a
design methodology for LTR via eigenstructure assignment
will be given.

Nomenclature
A B& C ... plant parameters
d.&d .. input and output disturbances

x{t) u(t)&y(t) ... states, input and output of the system
R()&F (L) weoeeenen- states and output of the observer

L A transmission zeros of (A,B,G)

state-feedback gain

. transfer function matrix of the compensator

... positive scalar

... left eigenvector of (A-HC)

. right eigenvector of (A-BG)

. square non-singular mXm matrix

. zero direction of the transmission zero

. input direction of the tramsmission zero

... maximum number of the finite transmission zeros
. left eigenvector of (A-BG-HC)

open-loop characteristic equation of the plant
closed-loop characteristic equation of the observer
.. order of the system

rank of matrices B and C

precompensator

3. Background

We will deal with the standard feedback configuration
shown in Figure 3-1, which consists of: plant model G (s);
compensator K(s), forced by command r(t); measurement
noise n(t); and the disturbances d(t) and d (t). The
precompensator, P(s), is used to filter the input l‘or command
following.
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Flgure 3-1: Standar] Closed-Loop System

Throughout this paper, we assume that the plant can be

described by equations 1 and 2

x(t) = A x(t) + B u(t) + B d,(t) (1)
y(t) = C x(t) + d (t) + n(t) (2)
where:

x(t)ER®,  uft)y(t),d;(t).d (t) and n(t) ER™
|A, B] is a stabilizable (controllable) pair
[A, C] is a detectable (observable) pair
rank (B) = rank (C) =



Once we specify the plant model, Gp(s), we must find K(s)
so  that: 1) the nominal feedback design,
y(s)=Gp(s)[I_,,+ K(s)Gp(s)! d,(s), is stable; 2) the
perturbed system in the presence of bounded unstructured
uncertainties is stable; 3) application-dependent design
specifications are achieved. The design specifications can be
expressed as frequency-dependent constraints on the loop
transfer function, K(s)Gp(s). The standard practice is to
shape the loop transfer function, K(s)Gp(s), so it does not
violate the frequency-dependent constraints [4]. The loop-
shaping problem can be considered to be a design trade-off
among performance objectives, stability in the face of
unstructured uncertainties {13, 23}, and performance
limitations imposed by the gain/phase relationship. Here we
assume that n(t) is a noise signal that operates over a
frequency range beyond the frequency range of r(t), d;(t) and
d (t). We also use a precompensator, P(s), to shape the
input for command following. Therefore, the performance
objectives are considered as only input disturbance rejection
over a bounded frequency range. The design specifications
may be frequency-dependent constraints on GP(S)K(S), which
is the loop transfer function broken at the output of the
plant, rather than on K(s)Gp(s), which is the loop transfer
function broken at the input to the plant. Applying the
design specifications to G_(s)K(s) implies rejection of output
disturbances.  Since Doyl'g. and Stein first applied LTR to
the loop transfer function, K(s)Gp(s), for consistency and
continuity we will also assume throughout this article that
all design specifications apply to K(s)Gp(s).

One method of designing K(s) consists of two stages. The
first stage concerns state-feedback design. A state-feedback
gain, G, is designed so that the loop transfer function,

G(slnn-A)"B , which is shown in Figure 3-2, meets the
frequency-dependent  design  specifications and  satisfies
equation 3 to guarantee stability.
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Figure 3-2: State-Feedback Configuration

\], cA+BG)u =0 =12, 3)

real (A, <0 u; # 0

\; is the closed-loop state-feedback eigenvalue, while u; is the
nX1 right closed-loop eigenvector of the system.
Controllability of [A,B] guarantees the existence of G in
equation 3. At this stage, one can determine whether or not
state-feedback design can meet the design specifications. In
this paper, we assume that G is selected so that equation
3 is satisfied and the loop tranmsfer function, G(slnn-A)"B,
which is shown in Figure 3-2 meets the desired frequency-
domain design specification. In the second stage of the
compensator design, an observer is designed to make the
first stage realizable |14, 25]. The observer design is not
involved in meeting the specifications for the loop tramsfer
function since all design specifications have been met by the
state feedback gain, G.

The observer has the structure of the Kalman filter.
Combining the state-feedback and observer designs (Figure
3-3) yields the unique compensator transfer-function matrix

Figure 3-3: Closed-Loop System

given by equation 4.

K(s) = G (s A+BG+HC)'H (4)

The idea behind observer design is to find the steady-state
gain, H, such that the loop transfer function, K(s)Gpl(s) ,
in Figure 3-1 maintains the same loop shape (for a bounded
frequency range} that G(slnn-A)'lB achieved via state-
feedback design in the first stage. A technique for designing
H to meet this criterion was offered by Doyle and Stein [4].
Since by this method, K(s)Gp(s) preserves the loop-shape
achieved by G(slnn-A)"B, the final design in Figure
3-1 meets the specifications that were already met by state-
feedback design. (The title “loop transfer recovery” comes
from this idea.) For stability of the observer, equation
5 must also be satisfied.

vi(wl,-A+HC =0T i=12 (5)
real (p;, <0 vT #0
w; and v:‘r are the observer eigenvalue and left eigenvector,

respectively. Observability of [A,C] guarantees the existence
of H in equation 5. The following lemma, which is proved
by Doyle and Stein [4], is central to the design of H:

If H is chosen such that limit 6 is true as scalar
approaches infinily for any non-singuler mXm W-matriz ,
Hip)
_ -

P

then K(s), as given by equation 4, approaches pointwise
toward ezpression T:

BW (6)

G (s1,,-A)! B[ C (sl,-AJ* B |, )

and gince Gpls) = C (sl“-A)" B 8)

then K(s) Gp(s) will appreack G (s1,,-A)" B pointwise.

The procedure requires only that H be stabilizing and
have the asymptotic characteristic of equation 6. Doyle and
Stein suggested one way to meet this requirement: a steady-
state Kalman filter gain [12] with very small measurement-

noise covariance. Now suppose we choose H with the
following structure:
H=)pBW 9

where W is any non-singular mXm matrix and p is a scalar.



It can be shown (by the definition of the limit) that the
structure of H chosen in equation 9 satisfies the limit in
equation 6 as p approaches infinity. In other words, as p
approaches infinity, ‘H — pBW’ results in ‘H/p — BW’.
(The reverse is not true.) Since the structure of H given in
equation 9 satisfies the limit in 6, then if H is chosen to be
pBW, K(s)Gp(s) will approach G(sI -A)'B pointwise, as p
approaches infinity. Note that the structure of H given by
equation 9 does not necessarily yield a stable observer. We
choose H to be pBW throughout this paper. The asymptotic
finite eigenstructures of both forms given by 9 and 6 are the
same, while the asymptotic infinite eigenstructures are usually
different. The form in equation 9 usually yields an unstable
infinite eigenstructure.

Although this paper is not an exposition of the properties
of the transmission zeros of a plant, before stating the
theorem, we will remind readers of some definitions and
concepts about this matter. (For more information and
properties of the transmission zeros, see references
[22, 3, 10].) The transmission zeros of a square plant are
defined to be the set of complex numbers s, that satisfy
inequality 10.

[ -A B (10)
rank < n+m
C 0

mm

The uecessary and sufficient condition for the truth of
inequality 10 is given by equation 11.

det = 0 (11)

Equation 11 yields | finite transmission zeros (I<n-m). The
remaining (n-1) transmission zeros are at infinity. For each
finite transmission zero, there is one non-zero left null-vector
[ziT -wiT] (for i=1,2,...,]) such that:

T T 3 =1
;. -wl] sl - A B .
= Orm (12
II IIII i
where: [z.lT --..__"_ gh0 T
wlis an mX1 vector, and z;ris an nX1 vector. ziT is called

lelft zero direction of the tramsmission zeros of the plant. If
the left eigenvector and left zero direction associated with a
pair of equal-valued eigenvalue and transmission zero are
equal, then s i5 an uncontrollable mode of the system.
These transmission zeros are called “input decoupling zeros’
[17].  Similarly, if the right eigenvector and the right zero
direction associated with an equal-valued eigenvalue and
transmission zero are equal, then s, is an unobservable mode
of the system. These transmission zeros are called ‘‘output
decoupling zeros.” A similar definition for the transmission
zeros of a square plant is given by reference [12]; all complex
numbers that are roots of ¥(s) in the equation:

det G = (13)
“ = e

are transmission zeros of the plant. ¢ (s) is the nth-order
open-loop characteristic equation. The maximum order of

¥(s) is 1. All transmission zeros of the plant, including the
ones that are equal to the eigenvalues of the plant (which
may even be the input-decoupling and/or output-decoupling
zeros of the system), are roots of W(s) and also satisfy
inequality 10 and equation 11. The equality of equations
13 and 11 can be shown by careful use of Schur’s equality

(8]-

4. Asymptotic Eigenstructure Properties of

the LTR Method

We will now explore some -eigenstructure properties for
LTR when the observer gain satisfies equation 9. Knowing
the eigenstructure properties of the compensator, we will
develop a method for designing H via eigenstructure
assignment of the observer. The following theorem gives the
eigenstructure properties of the observer when H is chosen
according to equation 9. Part 1 of the theorem is proved
differently in reference [2], and can also be considered to be
a special result of the multivariable root locus given by
references {18, 24, 11, 10]. The second part of the theorem
is the result we will use in the design process.

Theorem

Congsider the square linear observer in Figure 4-1-

%) = A X®) + He(t) + B u(t) (14)
ety = - C M) + y(v) (15)
AVER®  u(t) and y(t) €RM

with rank (B) = rank (C) = m
Then if H iz chosen so that.
H=pBW (16)

where W is any non-singular square matriz and p is o scalar
approaching oo, then the following statements are true:

1) The finite closed-loop eigenvalues of (A-HC), T
approach finite transmission zeros of the plant, 8. If the
linear plant [AB,C] has | finite transmission zeros, (1<n-m),
then (A-HC) will have | finite eigenvalues. The remaining
cloged-loop eigenvalues approach infinity ot any angle.

2) The left closed-loop eigenvector v;',' (i=12,...})
aggociated with the finite closed-loop eigenvalue W; approaches

ziT, which satisfies equation 17.

T T
[z -w/[] oA B ]
=0 (17)
C 0

z;l‘ 'w;r] # 0n+m'

w;ris an mX1 vector and z;ris an nX1 vector. If 5 is not

equal to any eigenvalue of A, then z! can be computed from
equation 17, and the following ezpression for v;r (i=1,2,....1)
cen be obtained:

vi=wl[C(sI, -A)"} (18)

where w;r(i=l,2,...,l) can be calculated from equation 19.



wi[C (s, -A)'B]=0.T (19)

where: w:"?é Om’r

jutt)
B

Y(t)-0

[ x(t) C yit)

H 1]

A

Figure 4-1: Closed-Loop Observer

Interpretation. This theorem identifies the asymptotic
locations of finite closed-loop eigenvalues and left
eigenvectors of the observer. As p approaches a large
number, 1 (for 1<n-m) closed-loop eigenvalues will approach
finite transmission zeros of the plant, and (n-I) closed-loop
eigenvalues will approaeh infinity at any angle. Since
conventional practice in complex variable work is to regard a
function as having an equal number of poles and zeros when
the zeros at infinity are included, one can claim that all
closed-loop eigenvalues approach the transmission zeros of the
plant. Equation 17 states that [ v;r -w;r] is confined in
the left null space of the given matrix in equation 17 as p
approaches infinity. In other words, the left null space of
the matrix given in equation 17 assigns a subspace for
limiting location of | v;r -w;r] when p approaches infinity.
If s; is not equal to any eigenvalues of A, the limiting
location of vI can be interpreted differently. Equation
18 states that the left eigenvector v:lr is confined to a sub-
~pace spanmed by the rows of [C(s] -A)'] if s is not
equal to any eigenvalues of A. This sub-space is of
dimension equal to the rank of C. Therefore, the number of
independent output variables determines how large the sub-
space corresponding to the left closed-loop eigenvector can
be. The orientation of each sub-space associated with each
left closed-loop eigenvector v;r depends on the open-loop
dynamics of the system [A,C] and the closed-loop observer
eigenvalue .. Construction of the left closed-loop
eigenvectors in their allowable m-dimensional sub-space in C®
is the exact freedom that is offered by observer design
beyond pole placement [9, 19, 20, 7. The second part of
the theorem identifies the asymptotic m-dimensional sub-
space in R" that confines the left closed-loop eigenvector v;r.
The choice of w'ir in equation 18 allows the designer to
construct each n-dimensional left closed-loop eigenvector in
its allowable m-dimensional sub-space. As p approaches a
large number, then w'ir approaches the left null vector of
G (s)) in equation 19; consequently, each left closed-loop
eigenvector v;r approaches a final value in its allowable sub-
space given by expression 18.

Proof:
Part 1: H is chosen according to equation 16. The block
diagram of the closed-loop observer is shown in Figure 4-2.

The loop transfer function at the plant output is given by
expression 20.

C (s AY'pBW (20)

u(t)

y(t)-0 PBW Xt f )'E(t) C ;(t )

Figure 4-2: Closled-Loop Observer Configuration

Equation 21 relates the open-loop and closed-loop
characteristic equations {16, 21].

(bcl(s)
det [1 + C (sl -Ay' pBW = -Z—
where: ‘1’01(5)

(21)
®,,(s} = closed-loop characteristic equation of
the system in Figure 4-2.

®,,(s) = open-loop characteristic equation of
the system in Figure 4-2.

From matrix theory, equality 22 is true [8].

det [1 + C (I A" pBW| = Lim +

m
trace[C(s -A)" pBW|+ ... +def{C(sI, -A)"sBW] (22)
As p approaches oo, the last term of equation 22 grows

faster than the other terms. Therefore, approximation 23 is
true.

det] 1 + C(sI -AJ! pBW|msdef[C(s] -A}* pBW]  (23)

Considering approximation 23, equation 21 can be written as:

det [ C (sIIm-A)‘l pPBW | fﬁ (24)
®,(s)
or equivalently:
det [GP(s)] det [p W] = E(_s_) (25)
(bol(s)

Since det |[p W] 5 0, comparing equations 13 and 25 shows
that the roots of W(s) and &,(s) are the same. In other
words, ¢cl(s) produces all the transmission zeros of the plant,
including the ones that ‘are equal to the eigenvalues of A,
which can even be decoupling zeros.

Part 2: When H approaches its asymptotic value, the
eigenvalues of (A-HC) can no longer be moved via matrix C.
This is true because the eigenvalues of (A-HC) are at their
limiting locations (i.e., transmission zeros of the plant).
Therefore, [(A-HC), B, C| must have unobservable or
uncontrollable modes.  Since [(A-HC), C] is an observable
pair and H is expressed as pBW, [(A-HC), B] must be an
uncontrollable pair. Since [(A-HC), B] is ar uncontrollable
pair, equations 26 and 27 are true [17].

viiwml,-A+HC =0T =12, ..,1(26)

viB =0T (27



p; is the closed-loop observer eigenvalue, and v;r is the
corresponding left eigenvector. Equation 27 states that the
left closed-loop eigenvector v;r from equation 26 is in the left
null space of B and cannot be affected by the input. FEach
closed-loop eigenvector v;r(for i=1,2,...,1) can be expressed by
equation 28.

vi(wl,-A)-wfCc=0T (28)

where: w;r= -vIH (29)

Combining equation 28 and equation 27 yields equation 30.
(Note that s;=p.)

v;l‘ 'w?l si[nn -A B

=0, .7 (30)

C 0

mm
where: | v:lr -w;r] # 0n+mT for i=1,2,...1

If 5, is not equal to any eigenvalue of A, then from equation
30 we can find an expression for the left closed-loop
eigenvector of A:

v;r= w;rC (8 L,-A yJ'oi=12 .,1 (31)
where w;rcan be computéd from equation 32

wi{C(s1 _ -A)'B]=0T i=12.] (32)
where: w;ryé OmT
Equation 31 shows that the left eigenvectors achievable for
the closed-loop observer are confined to the m-dimensional
sub-spaces determined by their associated eigenvalues and
open-loop dynamics [A, CJ.

Comment: As p approaches co, the | eigenvalues of (A-HC)
cancel out the | finite transmission zeros of the plant. A
cancellation of an equal-valued closed-loop eigenvalue of the
system with a transmission zero happens if the left closed-
loop eigenvector of the system is equal to the left zero
direction, ziT, associated with the transmission zero in
equation 17. By cancelling we mean they will not appear as
poles in the closed-loop transfer function matrix,
C[sl,-A+HC['B . The transmission zeros of [A, B, C] are
the same as those of [(A-HC), B, C|, because transmission
zetos do not change under feedback. As p approaches
infinity, the transmission zeros of [(A-HC), B, C| turn into
input decoupling zeros, because the system of |(A-HC), B, C]
is not controllable at these modes [17].

Corollary I: The finite transmission zeros of K(s} are the
same as the finite transmission zeros of G(sl“-A)“B.

Proof: The transmission zeros of G(sl, -AJ'B are the
complex values o; that satisfy the following inequality :

0.l A B (33)
rank < np+m

Post-multiplying the matrix in inequality 33 by the non-
singular matrix:

"a am (34)

will presull in i|1-"|||1:|.i:'.|::- 35 for the Grassmission 2ero8  of
G (sl_-AT' B
[a; 1., - A+BG4BWC  ;BW (35)
rank | < n4m

|_|_: [+

Substituting H for (pBW) in inequality 35 results in
inequality 36.

i I,~A+BG+HC H
rank < bn+m (36)
} 0

mm

The complex number o, that satisfies inequality 36 is a
transmission zero of K(s) as given by equation 4. Therefore,
K(s) and G{sl -A)'B have equal transmission zeros. If
G(slnn-A)"B does not have any finite transmission zeros,
then K(s) will not have any finite transmission zeros.

Corollary 2: If p approaches oo, then aoll the cigenvalues of
the compensator K(s) will approach the transmission zeros
(including the ones ot infinity) of the plant, and the left
eigenvectors of (A-BG-HC), x;l,. will approach z;l,‘ where z;r and
8 (i=1,2,..,1) satisfy equation 37.

=0 " (3

n+m
IF

7 'w;r] # 0m+nT

1

In other words, the eigenvalues of the compensator cancel out
the transmission zeros of the plant.

Proof: The transmission zeros of the plant are the set of
complex numbers s, that satisfy inequality 37. Post-
multiplying the matrix in equation 37 by the non-singular
matrix:

lllll (\nm (38)

will yield the following equation, which can then be solved
to find the finite transmission zeros of the plant:

wi | sl -A+HG B =
=0, T (39)

L8 [

1wk T - ¥
o ]n‘-rr- for i=1l, 2, |

| Ii] i

We apply the result of the theorem to system |[[A-BG), B,
Cl According to part 1 of the theorem, if  HespBW, theno
B p approaches oo, the eigeavalues of (A-DBG-HC) will
approach the transmission zercs of ||-‘.-T‘:i"i], B, I.'"E eomputed
from equations 39, These are alo the (rapsmission zeros of
the plant given by equation 37

According to part 2 of the theorem, the leflt closed-loop
cigenvertors t;ruf the compensator given by eguation 40¢

T P o T A r
o 1 -A+BGH+HO) = 0.7, i=1,2..1 (40

wlg oo T

approach FIT given by equation 39 or equation 37



5. Comments

1) According to corollary 2, as p approaches oo, the
eigenvalues of K(s) will cancel out the transmission zeros of
the plant. According to corollary 1, as p approaches oo, the
transmission zeros of K(s) will approach the transmission
zetos of G(sl -AY!B. Since the number of transmission
zeros of two cascaded systems (K(s) and Gp(s)) is the sum of
the number of transmission zeros of both systems, the
transmission zeros of K(s)Gp(s}) are the same as the
transmission zeros of G(sI  -A)'B. Similar arguments can be
given for the poles of K?S)GP(S). The poles of K(s} cancel
out the transmission zeros of the plant; therefore, the poles
of K(s)Gp(s) will be the same as poles of G(sl n-A)"B. This
argument does not prove the equality of Gslnn-A)"B and
K(s)Gp(s} as p approaches co. Proof of the pointwise equality
of K(s)Gp(s) and G(slnn-A)’lB is best shown by Doyle and
Stein in [4. The above comment concerning pole-zero
cancellation. explains the eigenstructure mechanism for LTR.
Since pole placement and eigenvector construction in the
allowable sub-space prescribes a unique value for H, we plan
to design the observer gain for the LTR via pole placement
and left eigenvector comstruction .

2) The asymptotic finite eigenstructure for H in both
equations 6 and 9 are the same, but the asymptotic infinite
eigenstructures are usually different. The form of H given
by equation 9 is rarely stabilizing. Since both forms
guarantee the pointwise approach of K(s)Gp(s) to G(sI_ -A)B,
it can be deduced that the pointwise approach of K&';Gp(s)
to G(sl -A)B occurs whenever the asymptotic finite
eigenstructure is the same as that given by the theorem.
Hence, combining any such finite eigenstructure with any
stable infinite eigenstructure will result in the approach of
K(s)Gp(s) to G(sI -A)B in a stable sense.

3) Difficulty in using LTR will arise if the plant has
some right half-plane zeros (non-minimum phase plant). In
our proposed procedure for LTR, one should place the
eigenvalues of (A-HC) at the transmission zeros of the plant.
If the plant is non-minimum phase, one would place some
eigenvalues of (A-HC) on the right half-plane. The closed-
loop system will not be stable if any eigenvalues of (A-HC)
are on the right half-plape. According to the separation
theorem, the eigenvalues of (A-HC) are also the eigenvalues
of the closed-loop system. Therefore, the sufficient condition
for LTR and the stability of the closed-loop system is that
the plant be minimum-phase. If the plant is non-minimum
phase, one should comsider the mirror images of the right
half-plane zeros as target locations for eigenvalues of (A-HC).
In such cases, loop transfer recovery is not guaranteed, but
the closed-loop system will be stable.

8. Design Method

For observer design, we place | finite eigenvalues of
(A-HC) at finite transmission zeros of the plant. The left
closed-loop eigenvector viT associated with the finite modes
must be constructed such that [v;T -w.T] is in the left null
space of the matrix given by equation 17. The remaining
(n-1) closed-loop eigenvalues should be placed far in the left
half-plane. Note that the farther the (n-l) infinite
eigenvalues of (A-HC) are located from the imaginary axis,
the closer K(s)G (s) will be to G(sl -A)B . This is shown in
the example. ?I‘he left closed-loop eigenvectors associated
with the infinite modes can be computed via equation 41.

v;r= w;rC (w1

AV =141, 142, (41)

where: w:‘r = - V?H (42)

The following steps will lead a designer toward observer
design for the recovery procedure:

1) Use equation 17 to compute the 1 target locations of
the complex finite eigenvalues of the observer, s, and 1 left
null vectors of | z;r Wl . p; must be selected to be
equal to s.. The left closed-loop eigenvector of the observer,
v;l: must be selected to be equal to z?.‘ If s, is not equal to
any eigenvalue of A, use equations 18 and 19 to compute
the 1 left closed-loop eigenvectors v;r and w;r. w;r identifies
the location of the left closed-loop eigenvector in its
allowable sub-space. This step terminates the construction of

finite eigenstructure of the observer.

2) Place the remaining (n-l) eigenvalues of (A-HC) at
locations farther than the finite transmission zeros of the
plant. Use equation 41 to achieve (n-l) values for v;r. The
w;r for infinite modes are arbitrary and have little
importance, because their corresponding eigenvalues are
selected far in the left half complex plane.

3) Since
viH=-wl i=12 {43)
then:
-v'll H=- w;r (44)
v vz
H va

Use equation 45 to compute H.

-
H=-. | T w'll (45)
2 Wb
.7 W]
vll wl’l

The independence of the n left closed-loop eigenvectors v;ris
a necessary condition to use eigenstructure assignment for
LTR. It the left closed-loop eigenvectors are not
independent, our approach fails and one must use Doyle and
Stein’s approach to recover the loop transfer function. The
dependency of the left eigenvectors might arise if multiple
finite transmission zeros result in equation 17. If degeneracy
of the matrix in equation 17 is equal to the multiplicity of a
transmission zero, the existence of n independent finite left
closed-loop eigenvectors is guaranteed.

7. Example
Consider the following example:
[a 0. 1. 0. 0.0 0.0
A= g 0. 0. 1. B = 0.0 0.0
a 0. 0. 0. 76.0 -105.0
a 0 0 0. -105.0 280.0




Suppose we are given G such that the closed-loop poles are
at -19.35, -1,76, -5.57 and -6.12 :

r 0.6631
L- . . 0.1952

Using equation 19, the finite transmission zeros s; and the

associated left null-vector directions w;r can be computed.
u, and p, are selected to be equal to s, and 8,

By =1, py=-.26, wj= (1 0], wj=1[0 1]

Using equation 18, the left closed-loop eigenvector associated
with the finite modes can be computed:

vi=0-1.00 0,00 0.00 0.00]

1
V2

[ 0.00 -4.00 0.00 0.00 ]

We place the other two eigenvalues of (A-HC) in the left
half-plane as far as possible. The directions of wsT and w‘T
do not matter because the associated eigenvalues are far
away. Figure 7-1 shows that the farther away from the
imaginary axis the two infinite eigenvalues of (A-HC) are,
the closer K(s)Gp(s) will be to G(slnn-A)"B. Assuming :

by = <30, b =36, i3=[1 0], ve=1[0 1]

and using equation 41, the left eigenvectors associated with
infinite modes can be computed:

[ -0.0333 0.0000 -0.0322 0.0000

-
L]

v { 0.0000 -0.0278 0.0000 -0.1103

Using equation 45, H can be computed:
1.0000  0.0000]
H =] 0.0000 0.25¢C
0.0000 0.000¢
0.0000 0.90C 0]

The finite transmission zeros of G(sl“-A)"B are located at
-4.3270 and -1.3675 . Table 7-1 shows that the transmission
zeros of K(s) approach the transmission zeros of G(slnn-A)"B
as y, and u, move farther into the left balf complex plane
(corollary 1). Table 7-1 also shows that the farther p, and
i, are from the imaginary axis, the closer the eigenvalues of
K(s) will be to the transmission zeros of the plant (corollary
2).

Closed loop |. Transmission Eigenvalues of )
eigenvalues zeros of K(s) K(s)

By = -1 -2.8097 -30.5672

By = -.25 -1.2662 -24.2387

pg = 10 -0 -1.0000

By = 712 -00 -0.2500

By = -1 -3.6734 -49,4030 +10.44781
Wy = -.25 -1.3311 -49,4030 -10.44784i)
by = -30 -0 -1.0000

Wy = -36 -00 -0.2500

B, = -1 -4.0855 -115.40 + 20.46i
By = -, 25 -1.3551 -115,40 - 20.461
g = -90 -00 -1.0000

ke = -108 -0 -0.25 )

Table 7-1:  Poles and Zeros of Kis)

the plant be minimum-phase. The limitation of this method
might arise when the plant has multiple finite transmission
zeros, and n left independent closed-loop eigenvector camnot
be constructed.
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= 1
By i

= -.25
By .

= =1
By 10
by = -12
o= =1
By 1
U = - N&
Hy < - L9
By = -30
Ry = -36
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