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Nomenclature

L1, Distance to center of mass of link 1.

L.1,: Distance to center of mass of link 1
perpendicular to center line.

L.o: Distance to center of mass of link 2.

L;: Length of link 1.

M,: Mass of link 1.

Msy: Mass of link 2.

I;: Moment of Inertia of link 1 about center of mass.
I5: Moment of Inertia of link 2 about center of mass.
I,: Moment of Inertia of transmission, pulleys, and
belt.

n: Transmission reduction ratio.

H (0): 2x2 Inertia matrix.

C(6,6): 2x2 Coriolis matrix.

G (0): 2x1 Gravity vector.

#1: Angle of link 1 relative to horizontal. + Counter-
clockwise (CCW).

f2: Angle of link 2 relative to link 1. + CCW.

6: 2x1 vector of angles.

601,: Equilibrium angle for link 1 relative to horizontal.
20: Equilibrium angle for link 2 relative to link 1.
0,: 2x1 vector of equilibrium angles.

T: Torque provided by transmission. + CCW.

Teq: Equilibrium torque.

7: 2x1 Input Torque vector.

t: 2x1 Input Torque vector to linearized equations of
motion.

x: 4x1 vector of states of linear system.

u: Input to linear system.

y: Output of linear system.

G1: Transfer Function from t2 to x1.

G4: Transfer Function from t2 to x2.

D{2}: 2x1 vector of Disturbance Torques to the links.
E{2}: 2x1 vector of Errors.

K: Set of controllers which internal stabilize closed
loop system.
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Abstract

The focus of this paper is to investigate the fea-
sibility of stabilizing an underactuated double inverted
pendulum. This preliminary investigation is motivated
by the desire to construct a two-legged walking robot.
The pendulum represents a single leg in a walking
robot. The design of a stabilizing controller using a
u-synthesis approach is explained in detail and condi-
tions for controllability and observability of the system
are given.

1 Introduction

Developing a two legged walking robot has been
the topic of research for many years now. A particu-
lar interest has been expressed in the construction of
a two legged and two armed robot that when coupled
to a human can be used to augment his strength [5].
Thus a human wearing this robotic suit can lift heavy
objects with ease [6]. Many of the walking robots de-
veloped have large feet in order to allow substantial
torque to be generated by motors located at the an-
kles. These large feet limit the distance the robot can
approach objects. This problem is known as ”ski feet”.
One approach to avoid this problem is to balance the
system with only actuation at the knee and leave the
ankle unactuated. Thus a pivoted or cylindrical foot
could be used. This paper investigates designing a
controller, using the p-synthesis approach, for one leg
of a walking robot.

2 Model

Figure 1 shows the schematic of the model for the
under actuated leg. It consists of two rigid links con-
nected by a rotary joint. Link 1 is pivoted at the base
so as to allow rotary motion but no translational mo-
tion. There is no actuation at this pivot point. A
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DC motor housed in link 1 supplies torque to the ro-
tary joint connecting link 1 and link 2. The torque
is transferred from the motor to the transmission by
a belt and pulley system. The output torque of the
transmission is increased by the transmission ratio n.
There are two degrees of freedom (61 and 62) of which
only one is powered (f2). Thus there is one less actu-
ator than degrees of freedom. Such systems are called
under actuated [1].

TRANSM SSION
EULLEY

BELT ——

DULLEYX
MOTOR —\\\

Figure 1: Schematic of the Under Actuated Leg

The dynamic equations of motion, in the absence
of any frictional forces are

H(0)6+C(0,0)0+G(@O) =T (1)
where
Hy1(62) = 6L +I2+M1(L21:1;+L§1y)
+My(L? 4+ L2, + 2L1 L2 cos(6))
ng(eg) = 12 + MQ(L%2 + Lchz COS(QQ))
Ho1(82) = Hia(62)
Hy, = L+0’Ly+ ML,
011(92,9.1) — —2M2L1L02 sin((b)ﬂl
Ci2(62,62) = —MaLiLe2 sin(f2)62
021(62,91) = —M2L1L02 sin(92)01
Cypy = 0
01(91 s 92) = Mlg(Lcly COS(91) + (Lcla: sin(Gl))
+MagLy cos(f:)
+MsgL.o cos(6r + 02)
Go(61,02) = MagLeocos(6y +62)
T = 0, To = T

It is desired to control the system about an oper-
ating point where the center of mass of the system is
above the pivot point. Equilibrium is defined as the
configuration where 6y = 0; = 6, =6y =0in equation

1 which leads to

COS(010 + 620) =
(M1 Leyy + MaLy) cos(810) + Mi Lz sin(f10)
- ML (
24i¢c2

2)

Mgchg COS(@lo + 620) = Teq (3)

From equation 2, given a particular y,, the corre-
sponding s, can be calculated. This equation gives
the family of equilibrium points which the leg can be
regulated about. Equation 3 gives the equilibrium
torque that is needed to be supplied by the actuator.

Since the system is to be controlled in a standing
position and not tracking, linear equations of motion
about an equilibrium point are needed. Linearizing
equation 1 about (610,020, 7c,) gives

h(6,)% +g(f,)x =t 4)
where
r1 = 01— b, Ty =0y — 03
hi1r = Hu(b1o), hiz = Hi2(620)
hoy = hio, hoo = Hao
g = Mlg(Lcly Sin(el) + (Lclz COS(gl))
+Msz1 sin(@l)
+MogLco sin(01 + 92)
g2 = MagLea sin(01 + 92)
tl = O, tz =T - Teq

This linear equation can be put into familiar state
space form by defining

X3 =g1, £L‘4=ég, ’U,:tz.
The state space form is then
Xx=Ax+Buy, y=Cx (5)
where
0 0 10
0 0 0 1
A= hoagri—hiagiz  h2egiz—hi2g12 0 0 )
hi1gi2—hi2g1y h11912£h12912 0 0
0
1o 1000
B=1 _za | C—[o 10 0}’
hyp
A

A = hy1hgy — h2,.
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Formulating the problem in this form allows inves-
tigation on how the physical parameters affect the sys-
tem. In designing such a system one must know the
conditions under which the system is controllable and
observable. It can be shown that the system is observ-
able at all points characterized by equations 2 and 3.
On the other hand, it can be determined that the sys-
tem is always controllable if and only if

h11912 — h12g11 # 0. (6)

Thus the system is always controllable as long as the
physical parameters are chosen such that the above
condition is satisfied.

The linear system given by equation 5 as discussed
before has one input (u) and two outputs (x; and 7).
Thus there are two transfer functions of interest:

(s - )

.’L‘l 12
Gi=y =z (A1) + A(i, 1))s2 + det(A) 2

2 k) ®)
u  st— (A(3,1) + A(4,1))52 + det(A)

Note that the dependence of transfer functions on s is
not denoted throughout the paper.

Both transfer function have two zeros and four
poles. Since the numerators and denominators have
non odd powers of s, the poles and zeros will be sym-
metric about the imaginary axis. This fact makes the
transfer functions unstable and non minimum phase
which can be affirmed from the physics of the system.

3 Limits of Performance

Using traditional SISO ideas, it can be shown that
the poles and zeros in the right half plane limit the
performance of the system. The system is represented
as shown in figure 2 where G; and G2 are defined in
equations 7 and 8 and K represents the controller.

The performance is defined in terms of the transfer
function from disturbances at the plant output to reg-
uletion error. Disturbances d; and ds to 8; and 6 are
modeled independently. Regulation error is defined to
be the deviation of @ from 8,. To apply traditional
SISO ideas, one can consider the system indicated in
the large dashed box as the equivalent controller K,
with stable internal dynamics applied to Gy. Then the
transfer function from d; to e; is

€1 1
5= di 1+ Gi1Ke ©)

Let z; be the right half plane zero, and p; and ps

be the two right half plane poles for G;. Freudenberg

€

Figure 2: Block Diagram of Closed-loop Linearized
System

and Looze [4] have shown that right half poles and
zeros impose the following limitations:

o . (p1+21)(p2 + 21)
/0 log]S(Jw)l (p1 — Zl)(pz - 21) '

(10)

Thus, there is a limit to the performance one can de-
mand from a system with right half plane zero and
poles. Equation 10 states that as the zero and the
poles get closer together the performance degrades.
Also by looking at the complimentary sensitivity func-
tion, one can show that the system cannot tolerate
much parameter uncertainty in the model near the
frequency of the right half plane poles. Since the phys-
ical parameters of a walking machine change (ie when
a load is picked up), an adaptive control law should
be implemented to adjust to the change in parame-
ters. For a detailed analysis of these limitations con-
sult [3, 4]. A similar analysis can be done with G to
show limitations imposed on it by the right half plane
poles and zeros.

1
dw = 7l
22+ w? W= mog

4 Controller Design

The p-synthesis approach was used to design the
controller for the under actuated leg. This approach
allows performance objectives to be achieved in the
presence of modeling uncertainty which is an impor-
tant consideration in this system. For further infor-
mation on this technique consult [2].

Figure 3 shows the interconnection structure used
in the design procedure. The solid blocks represent
the nominal linear model of the system in equation 4.
The weighting functions Wp1, Wpa, Wy3 and the norm
bounded stable transfer functions A; and Aj are used
to model plant uncertainty. The stable transfer func-
tions A; and A, are assumed to be unknown except
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Figure 3: Leg Interconnection Structure

for the norm condition ||A 2] < 1. This uncer-
tainty set is denoted A. The plant uncertain model
set is represented by the large dashed box of Figure 3,
where Ay 2 € A. The frequency dependent weighting
functions Wy through W, are used to define perfor-
mance objectives which are described in detail below.
These fictitious weighting functions are used in the
controller design only and are not implemented in the
actual closed loop system. Ounly the controller K is
actually implemented on the physical system. K is
chosen from the set of 2-input, 1-output, real rational
matrix functions which internally stabilize the closed-
loop system. This set will be denoted K. For any
A1, As € A choose K € K, then the closed-loop inter-
connection in Figure 3 represents a 4-input, 5-output
transfer matrix T(A1, Ay, K) where the four inputs
are D{2} and N{2}, and the five outputs are E{2},
Upen, Upen, and Gpen. These are the input/output sig-
nals used to define the performance objective. The
goal of the controller design technique is to perform
the following optimization

max min [|[T(A1, Aq, K)J|
Ar,Azestable K€K -
JJAq,2]<1

This equation shows the importance of the weight-
ing functions in defining a meaningful control design
problem. The choice of weighting functions will be
discussed below. Details are given in section 6.

The block designated as Wy, in Figure 3 is used to
model the uncertainty in the actual torque applied to
the system as compared to output of the controller. In
this system, there is a belt and pulley system which is
used to transfer power from the motor to the transmis-
sion. The belt and pulley system add extra dynamics
to the output of the actuator. This weighting function
allows for this extra dynamics to affect the controller

design process.

The blocks designated as Wy, and Wy are used
to model the uncertainty in the physical parame-
ters. A multiplicative model for uncertainty was used.
The uncertainities in the individual parameters are all
lumped together. Thus the uncertainty is only in the
individual entries of the matrix A.

The block designated as W1 is used to penalize the
output from the controller. Since this is a physical
system, there is a limit to the amount of torque that
can be produced from the motor. This block incorpo-
rates the saturation and limits the bandwidth of the
actuator in the design process. Since the time domain
signal from the controller in the design process is of
order 1, the weighting function should be chosen so
that |Willeo < somraien

The block designated as W; is used to penalize the
derivative of the output signal from the controller.
This penalty allows the designer to control the rate
at which the controller output can change.

The block designated as W3 is used to character-
ize the disturbance torques the system will experience
during operation. The D{2} time domain signals here
are of order 1. Hence, the large magnitude weighting
functions correspond to large magnitude disturbances.
There are two weighting functions here since there are
assumed to be two disturbances. One disturbance act-
ing on link 1, and one acting on link 2.

The block designated as W} is not used to penalize
or weight anything. It is used to orient the distur-
bance torques so they enter the system properly. Since
a disturbance on link 1 will not affect link 2 and a dis-
turbance on link 2 will impose a equal but opposite
disturbance on link 1, Wy was chosen as below.

hin ki |TU[1 -1
el ] 03]

The block designated as Wj is used to penalize the
angular velocity of the second link. Penalizing 65 indi-
rectly decreases the maximum excursion 6, undergoes.
The larger the penalty, the slower link 2 will move
when it leaves the equilibrium point, and the smaller
the excursion from equilibrium 6y will undergo.

The block designated as Wy is used to set the per-
formance objective. By adjusting the magnitude of
this weighting function, the tracking error in angles
can be specified. For example, if the weighting func-
tion for #; was set to 100 at DC, then the controller
would be designed to give 1% tracking at DC. Thus
this weight function is used to set the performance
objectives.

The block designated as Wy is used to model the
corruption of each measurement with sensor noise.
The noise was assumed to be additive.
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This interconnection structure was used to itera-
tively design a controller using the p-Analysis and
Synthesis Toolbox for Matlab.

5 Experimental Results
A physical system of the leg was built at Univer-

sity of California at Berkeley. A picture is shown be-
low in Figure 4. The physical parameters for the ac-

Figure 4: Physical System built at UC Berkeley

tual leg, based on the model, are as follows: L¢, =
0.298m, L.1, = 0.008m, Lo = 0.304m, L; = 0.508m,
My = 17.007kg, M, = 8.174kg, I = 0.559kgm?, I, =
0.390kgm?, I,,, = 0.0020kgm?, and n = 60.

Since the Hs optimal control design was used, a
set of weighting functions as described above had to
be chosen. The weighting functions are

Moo= e W = g

Wn = 2m We = 555

‘ r 0.001s+.5 0

W3 = 506“ .001s+4.5 J
L 10s+1

} _ [4% 4% 0 0

Wor = | 0 0 4% 4% |

r _[1 010

Ws = 101 01

) 0.554-8.66 0

W = [ S+8'11 550867

5+0.043 |
W _ 0.000125 0
o= 0 0.000025

Wp1 was chosen such that at low frequencies there
is only 5% uncertainty in the torque delivered to the

transmission and 100% at high frequencies where the
crossover frequency was set at 300%. The crossover

was set here since 375%“:—1 is the frequency which ex-
cites the first mode of the belt. Thus higher order
dynamics of the belt enter close to this frequency and
should be noted.

Whpo and Wpy3 were chosen such that there is a 4%
multiplicative uncertainty in A(3,1), A(8,2), A(4,1),
and A(4,2).

W1 was chosen such that at low frequencies the
controller output is limited to 13.3Nm, and at high
frequencies the output is limited to .25Nm. These
bounds were chosen such that at low frequencies the
command input to the servo amplifier would remain
in its linear range. At high frequencies which would
typically occur if the system went unstable, the gain
was chosen so no damage would occur to the system.
The crossover frequency was set to 50%‘5 well above
normal operation.

W, was chosen such that at low frequencies it would
be a differentiator with a gain of 5 and level off at 5%.

W3 was chosen such that at low frequencies the sys-
tem could reject a disturbance torque of 0.5Nm on
both links. The cutoff frequencies for both were set to
0.01222

sec”

W, was chosen such that at low frequencies 85 is
limited to 4 %%, and at high frequencies is limited to
0.2%’. The cross over frequency was set to 501;‘;—;1.

Ws was chosen such that at low frequencies there
is only 1.25% error in tracking in #; and 5% error
in tracking in 5. The crossover frequencies were set
to 10%;1 and 1%% for 6; and 6 respectively. At
higher frequencies the performance specifications were
relaxed to 200% error.

Wy was chosen to be the smallest unit of measure-
ment for both devices. Since both devices are high
precision encoders, this bound is reasonable.

With these weighting function, an 18th order con-
troller was developed which achieved a p of 0.966.
Thus, robust performance and robust stability are
guaranteed on the linear plant.

Figure 5 shows the real time response of the system
subject to the controller designed above. Both a simu-
lated (dashed) and real(solid) response are shown. In
the actual system, the initial deviations from equilib-
rium are smaller. However, the secondary deviations
are larger. This effect occurs since there is friction in
the system which is slowing down the system. An-
other interesting feature is that the time responses for
#; and 6, seem symmetrical. This symmetry can be
seen from equation 4. The system must satisfy this
equation to be in equilibrium. Thus this equation
constrains the angles such that if §; moves counter-
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Response to Initial Condition (89.75,-3.3)
T T T T

T

Theta1 in Degrees
o SR I U S

Theta2 in Degrees

4
Time

Figure 5: Simulated (dashed) and Actual(solid) Sys-
tem Response

clockwise, 83 must move clockwise to keep the center
of mass over the pivot point. As shown, steady state
error exists in both angles. 6; settles to 89.78°, and 64
settles to —3.15°. Both of these deviations are within
the performance specifications set by the Ws weight-
ing function.

Response to Disturbance Torques to Link 1
T T T —r——

&
1

©
=]

Thetal in Degrees
o
&
T

3
5
i

45 50

Theta2 in Degrees

Figure 6: Effect of Disturbance Torque on Linkl

The next experiment was to test the system’s ro-
bustness to disturbances. Figure 6 shows the response
of the system to three disturbance torques applied to
link 1. In this system, disturbance rejection is defined
in a slightly different way. In conventional practice,
controllers are designed such that disturbances have
no effect on the ovtput. However, since this system is
under actuated, the center of mass must move to coun-

teract any disturbance torques imposed on it. Thus
the angles will change from the desired value in order
to maintain stability. The first disturbance is a torque
in the counterclockwise direction with a magnitude of
approximately 0.2Nm. It is applied at approximately
17 seconds and then released at 18 seconds. The sys-
tem then returns to equilibrium in 7 seconds. As noted
before, §; moves in the opposite direction of 8; such
that the center of mass of the system remains above
the pivot point. A small disturbance torque is applied
at 29 seconds. A torque of approximately 0.5Nm was
applied in the clockwise direction at 35 seconds which
was the maximum disturbance torque included in the
design. The system recovered in approximately 7 sec-
onds again. The same behavior was observed when
disturbances were imposed on link 2.

6 Conclusion

A robustly stabilizing controller was designed for a
single leg using a p-synthesis approach. Performance
was achieved according to design specifications.
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