Abstract

A statically-balanced direct drive robot manipulator with new architecture is constructed at the University of Minnesota for stability analysis of Impedance Control (8,10,11). This mechanism, using a four-bar-linkage, is designed without extra counterweights. As a result of the elimination of the gravity forces on the drive system, smaller actuators (and consequently smaller amplifiers) can be chosen. This guarantees an acceleration of 5g without overheating the motors. This mechanism results in closed-form solution for the inverse kinematics. The closed-form solutions for dynamics and inverse kinematics have been derived. High torque, low speed, brush-less AC synchronous motors are used to power the robot. The relatively "large" workspace of this configuration is suitable for manufacturing tasks. Graphite epoxy composite material is used for the construction of the robot links.

Introduction

A statically balanced direct drive arm, with a four-bar-linkage has been designed to compensate for some of the drawbacks of serial type (1,2,15) and parallelogram type (3,4,20) direct drive arms. Before describing the properties of this arm, some disadvantages and advantages of direct drive arms are discussed here:

1. Speed. The maneuvering speed of the direct drive arms is not necessarily greater than the non-direct drive arms. The maximum achievable speed for a given architecture depends on the transmission ratio. The optimum transmission ratio is a function of the
Motivation

The following scenario reveals the crucial needs for adaptive electronic compliance control (Impedance Control) [8,10,11] in manufacturing. Consider an assembly operation by a human worker. There are some parts on the table to be assembled. Each time the worker decides to reach the table and pick a part, she/he always encounters the table with non-zero speed. The worker assembles the parts with a non-zero speed also. The ability of the human hand to encounter an unknown and unstructured environment [9,19], with non-zero speed, allows for a higher speed of operation. This ability in human beings flags the existence of a compliance control mechanism in biological systems. This mechanism guarantees the controllability of contact forces in constrained maneuvering. In addition to high speed maneuvering in unconstrained environment. With the existing state of technology we do not have an integrated sensory robotic assembly system that can encounter an unstructured environment as a human worker can. No existing robotic assembly system is faster than a human hand. The compliance in the human hand allows the worker to encounter the environment with non-zero speed. The above example does not imply that we choose to imitate human being factory level physiological/psychological behavior as our model to develop an overall control system for manufacturing tasks such as assembly and finishing processes. We stated this example to show 1) a reliable and optimum solution for simple manufacturing tasks such as assembly does not exist; 2) the existence of an efficient, fast compliance control system in human beings that allows for superior and faster performance. We believe that Impedance Control is one of the key issues in the development of high speed manufacturing operations. A direct drive robot arm is constructed at the University of Minnesota to investigate the stability of the robot in high speed manufacturing tasks under Impedance Control methodology.

Architecture

The architecture of this arm is such that the gravity term is completely eliminated from the dynamic equations. This balanced mechanism is designed without adding any extra counterbalance
weights. The new features of this new design are as follows:

I. Since the motors are never affected by gravity, the static load will be zero. Hence no overheating results in the system in the static case.

II. Because of the elimination of the gravity terms, smaller motors with less stall torque (and consequently smaller amplifiers) can be chosen for a desired acceleration.

III. Because of the lack of gravity terms, higher accuracy can be achieved. This is true because the links have steady deflection due to constant gravity effect. This will give better accuracy and repeatability for fine manipulation tasks.

IV. As depicted in Figure 2, the architecture of this robot allows for a "large" workspace. The horizontal workspace of this robot is quite attractive from the standpoint of manufacturing tasks such as assembly and deburring.

The arm has three degrees of freedom, all of which are articulated drive joints. Motor 1 powers the system about a vertical axis. Motor 2 pitches the entire four-bar-linkage while motor 3 is used to power the four-bar-linkage. Link 2 is directly connected to the shaft of motor 2. Figure 2 shows the top view and side view of the robot. The coordinate frame \(X_1Y_1Z_1 \) has been assigned to Link 1 of the robot for \(i=1,2,\ldots,5 \). The center of coordinate frame \(X_2Y_2Z_2 \) corresponding to Link 1 is located at point 0 as shown in Figure 2. The center of the inertial global coordinate frame \(X_0Y_0Z_0 \) is also located at point 0 (the global coordinate frame is not shown in the figures). The Joint angles are represented by \(\theta_1, \theta_2, \) and \(\theta_3 \). \(\theta_1 \) represents the rotation of Link 1; coordinate frame \(X_1Y_1Z_1 \) coincides on global coordinate frame \(X_0Y_0Z_0 \) when \(\theta_1=0 \). \(\theta_2 \) represents the pitch angle of the four-bar-linkage as shown in Figure 2. \(\theta_3 \) represents the angle between Link 2 and Link 3. Shown are the conditions under which the gravity terms are eliminated from the dynamic equations.

Figure 3 shows the four-bar-linkage with assigned coordinate frames. By inspection the conditions under which the vector of gravity passes through point 0 for all possible values of \(\theta_1 \) and \(\theta_3 \) are given by equations 1 and 2.

\[
\begin{align*}
\{m_3\overline{x}_3 - m_4\overline{L}_5 - m_5\overline{x}_5\} \sin \theta_3 &= 0 \quad (1) \\
\{m_3\overline{x}_3 - m_4\overline{L}_5 - m_5\overline{x}_5\} \cos \theta_3 &= 0 \quad (2)
\end{align*}
\]

where:

- \(m_1 \) - mass of each link,
- \(L_i \) - length of each link,
- \(\overline{x}_i \) - the distance of center of mass from the origin of each coordinate frame,
- \(m_3 \) - mass of motor 3.

Conditions 1 and 2 result in:

\[
\begin{align*}
m_3\overline{x}_3 - m_4\overline{L}_5 - m_5\overline{x}_5 &= 0 \quad (3) \\
g\{m_3 + m_5\} - m_2\overline{x}_2 - m_2(L_2 - g) - m_4\overline{x}_4 - g
\end{align*}
\]

If equations 3 and 4 are satisfied, then the center of gravity of the four-bar-linkage passes through point 0 for all possible configurations of the arm. Note that the gravity force still passes through 0 even if the plane of the four-bar-linkage is tilted by motor 2 for all values of \(\theta_2 \).

Since at low speeds, AC torque motors do not tend to cog, we chose low speed, high torque, and brush-less AC synchronous motors to power the robot. Each motor consists of a ring-shaped stator and a ring-shaped permanent magnet rotor with a
Forward Kinematics

The forward kinematic problem is to compute the position of the end point in the global coordinate frame \(X_0Y_0Z_0\), given the joint angles, \(\theta_1\), \(\theta_2\), and \(\theta_3\).

The joint coordinate relationship of the \(i\) coordinate frame relative to the \(i-1\) coordinate frame in Figure 4 can be represented by the homogeneous transformation matrix \(\mathbf{T}_{i-1}^i\) that follows the modified Denavit Hartenberg notation. (6)

\[
\mathbf{T}_{i-1}^i = \begin{bmatrix}
C_1 & -S_1 & 0 & d_1 \\
S_1C_{\alpha_1} & C_1C_{\alpha_1} & -S_{\alpha_1} & -S_1C_{\alpha_1}d_1 \\
S_1C_{\alpha_1} & C_1C_{\alpha_1} & S_{\alpha_1} & C_1S_{\alpha_1}d_1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\(S\) and \(C\) refer to Sine and Cosine functions, and \(d_1, \alpha_1\), and \(\theta_1\) are link parameters. The link parameters of the arm are listed in Table 1. Note that the coordinate frame \(X_1Y_1Z_1\) coincides with the global coordinate frame, \(X_0Y_0Z_0\), when \(\theta_1\) is zero.

The homogeneous transformation matrix, which describes the position and orientation of coordinate frame \(X_nY_nZ_n\) with respect to the global coordinate frame \(X_0Y_0Z_0\) is given by

\[
\mathbf{T}_n^0 = \begin{bmatrix}
C_1C_2C_3 & C_1C_2S_3 & -C_1S_2 & (C_1C_2C_3 - S_1S_3)(L_3 - L_5) \\
C_1S_2 & S_1S_3 & C_1C_2 & C_1C_2(-L_2 - g) \\
S_1C_2C_3 & -S_1C_2S_3 & S_1S_2 & (S_1C_2C_3 + C_1S_3)(L_3 - L_5) \\
+S_1S_3 & +S_1C_3 & C_1C_2 & S_1S_2(L_2 - g) \\
S_2C_3 & -S_2S_3 & C_2 & S_2[L_2 - g] \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
where \(S_i = \sin(\theta_i) \), and \(C_i = \cos(\theta_i) \)

\[\theta_3 = \cos^{-1} \left(\frac{P_x^2 + P_y^2 + P_z^2 - (L_2 - g)^2 - (L_3 - L_5)^2}{2(L_2 - g)(L_3 - L_5)} \right) \] (9)

Dynamics

The closed-form dynamic equations have been derived for the purpose of controller design. The dynamic behavior of the arm can be presented by the following equation (5,6)

\[M(\theta)\ddot{\theta} + C(\theta)(\dot{\theta}^2) + G(\theta) + \tau = 0 \] (10)

Where:
- \(\tau := \begin{bmatrix} \tau_1 & \tau_2 & \tau_3 \end{bmatrix}^T \) \(3 \times 1 \) vector of the motor torques,
- \(M(\theta) \) \(3 \times 3 \) position dependent symmetric positive definite inertia matrix,
- \(C(\theta) \) \(3 \times 3 \) centrifugal coefficients matrix,
- \(G(\theta) \) \(3 \times 3 \) Coriolis coefficients matrix,
- \(\theta := \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \end{bmatrix}^T \) \(3 \times 1 \) vector of gravity force,
- \(\dot{\theta} := \begin{bmatrix} \dot{\theta}_1 & \dot{\theta}_2 & \dot{\theta}_3 \end{bmatrix}^T \)
- \(\ddot{\theta} := \begin{bmatrix} \ddot{\theta}_1 & \ddot{\theta}_2 & \ddot{\theta}_3 \end{bmatrix}^T \)

Inverse Kinematics

The inverse kinematic problem is to calculate the joint angles for a given end point position with respect to the global coordinate frame. The closed-form of inverse kinematics of the proposed arm derived using the standard method (6,17). The end point position of the robot relative to the global coordinate frame is characterized by \(P_x, P_y, \) and \(P_z \).

The joint angles for the given end point position can be determined using the following equations

\[\theta_1 = \text{atan2}(P_y, P_x) - \text{atan2}((L_3 - L_5) \sin \theta_3, (L_2 - g)^2 - (L_3 - L_5)^2) \] (7)

\[\theta_2 = \sin^{-1} \left(\frac{P_z}{(L_2 - g)^2 - (L_3 - L_5)^2} \cos \theta_3 \right) \] (8)

Table 1: Link Coordinates and Parameters

<table>
<thead>
<tr>
<th>Frame</th>
<th>(\alpha_{i-1})</th>
<th>(\theta_{i-1})</th>
<th>(d_i)</th>
<th>(\theta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1Y_1Z_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\theta_1)</td>
</tr>
<tr>
<td>(X_2Y_2Z_2)</td>
<td>90°</td>
<td>0</td>
<td>0</td>
<td>(\theta_2)</td>
</tr>
<tr>
<td>(X_3Y_3Z_3)</td>
<td>-90°</td>
<td>(L_2 - g)</td>
<td>0</td>
<td>(\theta_3)</td>
</tr>
<tr>
<td>(X_4Y_4Z_4)</td>
<td>0</td>
<td>(L_3 - L_5)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Assume end point coordinate frame \(X_4Y_4Z_4 \) has the same orientation as coordinate frame \(X_3Y_3Z_3 \)
The contact force, f, is a function of the input command vector, r, when the robot is in contact with the environment.

The first design specification allows for free manipulation when the robot is not constrained. If the robot encounters the environment, then according to the second design specification, the contact force will be a function of the input command vector. Thus, the system will not have a large and uncontrollable contact force. Note that r is an input command vector that is used for both unconstrained and constrained maneuverings. The end-point of the robot will follow r when the robot is unconstrained, while the contact force will be a function of r (preferably a linear function for some bounded frequency range of r) when the robot is constrained.

Note that the above notation does not imply a force control technique. We are looking for a controller that guarantees the tracking of the input-command vector when the robot is not constrained, as well as the relation of the contact-force vector with the same input-command vector when the robot encounters an unknown environment.

The general form of the non-linear dynamic equations of a robot manipulator with positioning controller is given by two non-linear vector functions G and S in equation 11.

$$y = G(e) + S(d)$$

where:

- d is the input vector of the external force on the robot end-point
- e is the input trajectory vector
- G is the robot dynamics with positioning controller
- r is the input-command vector
- S is the robot manipulator stiffness
- y is the vector of the robot end-point position
- e is the input trajectory vector that the robot manipulator accepts via its positioning controller.

The design objective is to provide a stabilizing dynamic compensator for the robot manipulator such that the following design specifications are satisfied.

1. The robot end-point follows an input-command vector, r, when the robot manipulator is free to move.

Compliant Motion Control

The control method explained here is general and applies to all industrial and research robot manipulators. We take the time-domain nonlinear approach to arrive at the controller design methodology and its stability condition. The detailed controller design is given in references 13 and 14. A summary of the nonlinear modeling and the controller design is given here.

In general, manipulation consists of two categories. In the first category, the manipulator end-point is free to move in all directions. In the second, the manipulator end-point interacts mechanically with the environment. Most assembly operations and manufacturing tasks require mechanical interactions with the environment or with the object being manipulated, along with "fast" motion in free and unconstrained space. Therefore the object of the control task on this robot is to develop a control system such that the robot will be capable of handling both types of maneuvers without any hardware and software switches.

The design objective is to provide a stabilizing dynamic compensator for the robot manipulator such that the following design specifications are satisfied.
design method (21), one can always arrive at operator G such that it maps the input command vector, \(e \), to the robot end-point position, \(y \). The motion of the robot in response to imposed forces on the end-point is caused by either structural compliance in the robot or the positioning controller compliance. \(S \) represents this compliance. Note that robot manipulators with positioning controllers are not infinitely stiff in response to external forces (also called disturbances). Even though the positioning controllers of robots are usually designed to follow the trajectory commands and reject the disturbances, the robot end-point moves somewhat in response to imposed forces on the robot end-points. Although \(d \) and \(e \) affect the robot in a nonlinear fashion, equation 11 assumes that the motion of the robot end-point is a linear addition of both effects. No assumptions on the internal structure of \(G \) and \(S \) are made.

The dynamic behavior of the environment is given by mapping \(E \) in equation 12.

\[
f = E(x) \tag{12}
\]

If one point of the environment is displaced as vector of \(x \), then \(f \) is the required force to do such a task (Figure 5). \(E \), represents the environment dynamics, while \(f \) and \(x \) are \(n \times 1 \) vector of the contact force and the environment deflection respectively. \(x_0 \) is the initial location of the point of contact before deformation occurs and \(y \) is the robot end-point position \((x-y-x_0) \). We assume \(G \), \(S \) and \(E \) are stable operators in the \(L_p \)-sense (13,14). The environment dynamics could be very "soft" or very "hard". We do not restrain ourselves to any geometry or structure for modeling the environment. We try to avoid the structured dynamic models such as first or second order transfer functions to represent the dynamic behavior of the environment. These models are not general and their corresponding simplified analysis consequently results in non-general conclusions.

The control architecture of Figure 6 shows how electronic compliancy is developed in the system. The input to the compensator, \(H \) is the contact force. The output of the compensator is subtracted from the input command vector, \(r \). The discriminator block-diagram in Figure 6 shows that the environment and the robot may have uni-directional interaction (such as pushing only). Note that when the robot is in interaction with the environment, \(f = d \) and \(x = y-x_0 \). There are two feedback loops in the system. The upper loop is the natural feedback loop. This loop shows how the contact force affects the robot in a natural way when the robot is in contact with the environment. The lower feedback loop is the controlled feedback loop.

\[
y = G(e) - S(f) \tag{13}
\]

\[
f = E(x) \tag{14}
\]

\[
e = r - H(f) \tag{15}
\]
We choose a class of compensators, H, to control the contact force with the input command r. This controller must also guarantee the stability of the closed-loop system shown in Figure 6. The input command vector, r, is used differently for the two categories of maneuverings; as an input trajectory command in unconstrained space and as a command to control of force in constrained space. We do not command any set-point for force as we do in admittance control. This method is called Impedance Control because it accepts a position vector as input and it reflects a force vector as output. There is no hardware or software switch in the control system when the robot travels from unconstrained space to constrained space. The feedback loop on the contact force closes naturally when the robot encounters the environment. V is introduced to represent the forward loop mapping from e to f. To guarantee the stability of the closed loop system, the L_p-norm of H must be less than the reciprocal of the "magnitude" (in the L_p-sense) of the mapping V in Figure 7.

$$
\| H \| < \frac{\| e \|_p}{\| V(e) \|_p}
$$

(16)

A similar result has been derived for linear case (invariant inertia robot) using Nyquist stability Criteria in reference 13.

$$
\sigma_{max}[H] < \frac{\sigma_{max}[V(e)]}{\sigma_{max}[E(SE + I_n)^{-1}G]}
$$

for all $\omega \in [0, \infty)$

The stability bound automatically leads to selection of the class of compensators, H.

Figure 7: Manipulator and the Environment with Force Feedback Compensator, H (simplified version of Figure 6)

Summary

This paper presents some results of the on-going research project on statically-balanced direct drive arm at the University of Minnesota. The following features characterize this robot:

1. The statically-balanced mechanism without counter weights allows for selection of smaller actuators. Since in static or quasi-static operations, no load is on the actuators, therefore the overheating of the previous direct drive robots will be alleviated.
2. The robot links are made of graphite-epoxy composite materials to give more structural stiffness and less mass. The high structural stiffness and low mass of the links allow for the wide bandwidth of the control system.
3. Electronic complacency (impedance control) has been considered for control of the robot. The object of the control task is to develop a control system such that, this robot will be capable of maneuvering in both constrained and unconstrained environments.

Appendix A

A simple example is given here to show the that transmission system does not necessarily results in lower speed for the output shaft. Consider the following system:

$$
T = \frac{n I_1 + I_2}{n I_1 + I_2/n}
$$

The dynamic equation describing the behavior of the system can be represented as:

$$
\dot{\theta}_2 = \frac{T}{(n I_1 + I_2/n)}
$$

where $[(I_1,R_1,\theta_1)$ and (I_2,R_2,θ_2) represent the moments of inertia, radius and angle of each gear $(n = R_2/R_1)$. T is the motor torque. It is clear that the maximum acceleration will happen when n is chosen as:

$$
n = \sqrt{\frac{I_2}{I_1}}$$
Appendix B

The uncertainty about the following parameters is about 10%.

<table>
<thead>
<tr>
<th>Link</th>
<th>Length (cm)</th>
<th>Mass (kg)</th>
<th>Inertia (kg-cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60.33</td>
<td>13.886</td>
<td>0.421 3.7805 3.7805</td>
</tr>
<tr>
<td>2</td>
<td>-11.17</td>
<td>3.206</td>
<td>0.0397 0.4796 0.4796</td>
</tr>
<tr>
<td>3</td>
<td>53.34</td>
<td>2.924</td>
<td>0.0207 1.3253 0.0</td>
</tr>
<tr>
<td>4</td>
<td>15.24</td>
<td>7.62</td>
<td>0.0016 0.0694 0.0694</td>
</tr>
<tr>
<td>5</td>
<td>22.23</td>
<td>-</td>
<td>- - -</td>
</tr>
</tbody>
</table>

* In calculation of these values, we assume motor 3 is a part of Link 2. For example 13.886 kg in the above table includes mass of Link 2 (4.626 kg) and mass of motor 3 (9.26 kg). The "height" of the robot, from the base to the origin of the X1V2Z1, is 62.992 cm (24.8 inch).

References

