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Two of the problems in robotic deburring have been
addressed in this paper: tracking the planar two dimensional part
contour, and control of the metal removal process. The tracking
mechanism is a roller bearing mounted on a force sensor at the
robot endpoint. The tracking controller utilizes the force measured
by this force sensor to find the normal vector to the part surface.
Using the part contour information the robot travels along the edge
of the part.

The metal removal algorithm uses another set of contact
forces; cutting forces generated by the cutter, to develop a stable
metal removal. This algorithm generates electronic compliancy
for the robot along the edge of the part . The electronic compliancy
along the edge of the part causes the robot to slow down when the
cutter encounters a burr. A set of experimental results is given to
verify the effectiveness of the approach.

Two problems are involved in development of an automated
robotic deburring of parts with unknown geometry: 1) the design of
an appropriate procedure for a stable metal removal, and 2) the
development of an stable control method for tracking the edge of the
parts with unknown geometry. Although these two problems for a
particular application may be merged together, we separate them in
the categories of hardware and control method. This separation
allows us to arrive at improved results for both tracking and metal
removal. References 2, 3, 4, 7, 12 and 13 list various effective robotic
deburring methods where the knowledge of the part geometry is
essential. Section 2 describes a tracking control method, while
section 3 is devoted to development of the deburring method.

Tracking a two dimensional part by a robot is defined as a
stable maneuver in which the robot endpoint always remains in
contact with the part. Note that the above definition does not include
the geometric knowledge of the part. In fact, the geometric
knowledge of the part may not be exactly available prior to the
tracking maneuver.

The above definition is also independent of the control
strategy and it implicitly states the stability of the system and
consequently the boundedness of the contact forces. Figure 1 shows
the schematic of tracking an edge of a part. Although the regulation
of the contact force in the direction normal to the part surface is an
attractive choice in many industrial applications, one is not
restrained to do so in tracking a two dimensional surface!. There
are two components in performing the tracking of a part with
unknown geometry: the collection of the part geometry and the
control method. In section 2.1 we describe one method of collecting
the part geometry while section 2.2 is devoted to the robot control
method and its stability.

In this section, we describe a practical method of collecting
the part geometry based on the measurement of the interaction forces
between the part and the robot. A two dimensional force sensor
mounted on a roller bearing can provide sufficiently accurate force
information for tracking purposes. Figure 2 shows the detailed

10ne may develop impedance control in the direction normal to the
part such that the robot is compliant and therefore the normal force
remains bounded. .
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Figure 1: A roller bearing mounted on a force sensor can be

used as an end effector in tracking a part.

schematic of the force sensor assembly mounted on a robot. We
assume that the part is mounted on a stationary platform. The
tracking force imposed on the part by the robot, t, consists of two
components; the compression force, t,, in the direction normal to
the part surface, and the friction force, t, tangent to the part (Figure
3). If the friction between the roller and part surface is of the
Coulomb type then:

tt=p ta 1)

where [l is the coefficient of dry friction. If the measured forces in
the global coordinate frame are t, and t, then equality 2 can be
achieved by inspection of Figure 3.
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o is the angle between the normal to the part and the y axis in the
global coordinate frame. Equations 1 and 2 taken together result in

equation 3 for the value of «.
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Figure 2: The Schematic of the Force Sensor Assembly
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by measuring t, and ty, one can calculate o if | is known2. Exact
calculation of o requires a precise value of u. Since the friction
between the roller bearing and the part surface is very small, then
one can arrive at an approximate value for o from equation 5. (We
will experimentally verify the small size of | in Section 2.2, Figure
6).

t.
a=Tan™! -t—x (5)
y

In practice, | is not a zero quantity and any small perturbation of i
will cause o to deviate from its value given by equation 5. The
sensitivity of « in the presence of the perturbation of |t can be
approximated by:

1
1+ pz 01.1 (6)

where & represents a small deviation. &, for a roller bearing, is
a small number which results in a small deviation in ao.
S6u=0.01 results in 8a=0.57° where u=0.  This sensitivity
analysis shows that a simple force sensor assembly allows for a
relatively accurate part geometric information.
part
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Figure 3: t, and t, are tangential and normal forces exerted on
the part.

In this section, there is development of a control method that
allows the robot to track the edge of two dimensional parts.
Employing the above method for calculation of the surface normal,
the control method keeps the normal contact force constant. The
designer is allowed, however, to assign a velocity command in the
tangential direction. We will clarify later in Section 3 that the
deburring approach described here assigns a value for tangential
velocity.

The assumption is made that the robot already has a
velocity controller, since most industrial manipulators already
have one. A number of methodologies exist for the development of
robust velocity controllers for direct and non-direct robot
manipulators. In general, the endpoint velocity of a robot
manipulator that has a velocity controller is a dynamic function of
its input trajectory vector, e, and the external force, t. Let G and §
be two functions that show the robot endpoint velocity in a global
coordinate frame, v, is a function of the input trajectory, e, and the
external force, t.

v = Gle) + S(1) @

The motion of the robot endpoint in response to imposed
forces, t, is caused by either structural or velocity controller
compliance in the robot3. Robot manipulators with velocity
controllers do not produce infinitely stiff in responses to external
forces (also called disturbances). Even though the velocity
controllers of robots are usually designed to follow the trajectory
commands and to reject external forces, the robot endpoint will
move somewhat in response to imposed forces on it. The sensitivity
function,S, maps the external forces to the robot velocity. "Good”

2 Note that an equality similar to equation 3 can be derived using the
measured forces in the hand coordinate frame rather than the
global coordinate frame. For the benefit of consistency throughout
the paper we chose to express the measured forces in the global
coordinate frame.

3 In a simple example , if a Remote Center Compliance (RCC) with a
linear dynamic behavior is installed at the endpoint of the robot,
then S is equal to the reciprocal of stiffness (impedance in the
dynamic sense) of the RCC.
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velocity controller robots and non-direct drive robots with high gear
ratios have small sensitivities to external forces, therefore having S
as a mapping with small gain. No assumption on the internal
structures of G(e) and S(t) is made.

Figure 4 shows one possible example of internal structure of
the model represented by equation 7. The robot open loop dynamic
equation is M(8)& +C(6,6)+6.(6) =T+J,Tt where M(6), C(6,8),
G-(8) and J, are the inertia matrix, coriolis, gravity forces and the
Jacobian, respectively. The driving torque and the external forces
on the robot are represented by, T and t . With the help of two
mappings, Ty and T, we define 64, as the desired velocity and 6,
as the actual velocity of the robot both in the joint coordinate frame.
P1and P2 are computer programs that calculate the best estimated
values of nonlinear terms in robot dynamics. K, is the appropriate
velocity gain to stabilize the system(14). The system in Figure 4
with two inputs, e and t, and one output, v, can be represented by
equation 7. In the analysis of the tracking controller, we employ
equation 7 as the basic dynamic equation of the robot that alreac
has a velocity controller. The type of the velocity controller is not of
importance at this stage. Regardless of the kind of controller, one
can always consider the closed loop system dynamics in terms of
the structure of equation?7. .

P2: C(6,8)+Gr (6)

Figure 4: One possible example in development of the velocit
controller for a robot with rigid body dynamics. M(6), C(6,0]
and G.(O) are the estimated values (14).

Equation 7 represents an input/output functional
relationship. It allows us to incorporate the dynamic behavior of all
the elements of the robot. Many industrial robot manipulators
already have some kind of velocity controllers. Within the
bandwidth of the velocity control, (0, w,), the dynamic behavior of
the robot is uncoupled. In other words, for all frequencies in (0,
w,), a command in a particular direction will generate a velocity
in the commanded direction only. Outside of the robot closed loop
bandwidth, the robot dynamics are coupled and a velocity command
in a particular direction may develop a velocity deviation in some
or all directions. Regarding the above practical issue, we assume G
and S are uncoupled functions within (0, w,); G, and S, represent
the robot dynamic behavior in the direction normal to the part, while
Gy and Sy show the dynamics of the robot in the direction tangent to
the part. Figure 5 shows the dynamics of the robot and the part in the
direction normal to the part. E, represents the dynamic behavior of
the part and force sensor in the direction normal to the part. In the
simplest case, one can think of E, as the stiffness of a spring that
could possibly model the part stiffness.
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Figure 5: The Block Diagram of the System in the Normal
Direction When the Robot is in Contact with the Part.




The compensator, H,, is considered to operate on the contact
force, t,. The reference signal,t,, represents the desired normal
contact force. The compensator output signal subtracted fiowa %o iz
used as the normal input command signal, e, for the robot velocity
controller.

There are two feedback loops in the system: the inner
feedback loop (the natural feedback loop), and the outer feedback
loop (the controlled feedback loop). The inner feedback loop shows
how the contact force affects the robot in a natural way when the robot
is in contact with the part. The outer feedback loop is the controlled
feedback loop. When the robot and the part are in contact, the value
of the contact force and the endpoint velocity of the robot are given
by, t, and v, where the following equations are true:

Va=Gplen)-8,(t,) (8)
th=En ([vp) 9)
en= L - Hy ty ao

If the operators in equations 8, 9, and 10 are linear, the
transfer function in equation 11 can be obtained to represent the
force in the normal direction.

th = Enls +S,En+ Gp HaEn)™'G, 1t 1)

Impedance of the part in the normal direction, E,, is a large
quantity in comparison with the other parameters in the system. If
En approaches infinity, equations 12 and 13 represent the value of t,,
and v,

th = (Sh+ GpHa) G, to a2)
Vo= 0 (13)

Note that the summation of, S, and G,Hj, in equation 12
develops the total compliancy in the system. G,H, represents the
electronic compliancy in the robot while S, models the natural
hardware compliancy (such as RCC or the robot structural
compliancy) in the system?. A large value for Hy develops a
compliant robot while a small H, generates a stiff robot. Reference 9
describes a micro manipulator in which the compliancy in the
system is shaped for metal removal application. Equation 12 also
shows that a robot with good tracking capability (small gain for S,)
may generate a large contact force in a particular contact. In order
to guarantee the stability of the closed-loop system of Figure 5,
arbitrarily large values for H, cannot be chosen. To guarantee the
stability of the closed-loop system in the linear case , H, must be
chosen such that (11)5:

[Hal < |s 67" (Sp/s + 1/E4)] 14)

where |.| denotes the magnitude of the transfer function. The
smaller the sensitivity of the robot manipulator, the smaller H,
must be. Also, inequality 15 shows that the more rigid the part is the
smaller H, has to be. In the "ideal case”, no H, can be found to
allow an infinitely rigid robot (S, =0) to interact with an
infinitely rigid part (E,— o). In other words, for the stability of
the system shown there must be some compliancy either in robot or
in the part. RCC, structural dynamics and the tracking controller
stiffness form the compliancy on the robot. An XY table (Figure 10)
was employed as a simple two dimensional robot to experimentally
verify the effectiveness of the tracking method. The XY table holds
the part to be tracked while a stationary platform holds the force
sensor and the roller bearing. The XY table is powered by two DC

4 Equation 11 can be rewritten as ta=(SEn™"+ Sp+ GaHp)™' Gy to.
Note that the part admittance (1/impedance in the linear domain),
Ey”', the robot sensitivity (1/stiffness in the linear domain), Sh,
and the electronic compliancy , G,H,, add together to form the total
sensitivity of the system. If H =0, then only the admittance of the
environment and the robot add together to form the compliancy for
the system. By closing the loop via H,, one can add to the total
sensitivity of the system.

5 The stability criterion for interaction of a multivariable
nonlinear robot with a part with nonlinear dynamic behavior has
heen described in references 11.

motors via a two screw mechanism. ‘f'he screws are double-he¢hx
and 0.2 inch per revolution. Each axis of the table has a simple I'ID
velocity controller. A small enough H, was chosen in order to
guarantee inequality 14. Figure 6 shows the experimental values
for normal and tangential forces, t; and t, for a period of two
seconds.
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Figure 6: Normal and Tangential Contact Forces in Tracking.
The Commanded Velocity in Tangential Direction is 0.5 cm/sec.

3. Deburring Strategy
This section focuses on the deburring mechanics and its
required control approach. We start with analysis of the deburring
process model in Section 3.1. Section 3.2 is devoted to the required
control strategy for metal removal.

1 Pr Dynami

This section describes several quantitative and geometric
properties of burrs formed in the cutting process. These properties,
which are independent of the control algorithm, lead us to the
development of a simple dynamic model for the cutting process.
The control algorithm used in Section 3.2 is benefited by this
dynamic model. The Material Removal Rate (MRR) of a deburring
pass is a function of the velocity of the tool bit along the edge and the
cross sectional areas of both the chamfer and the burr (7, 10). This
relationship can be expressed as:

MRR = (Aohamfer * Aburr) Vicol 1s)

In the deburring process, the cutting force in the tangential
direction is proportional to MRR. For a given constant feedrate,
Viool, the tangential force varies significantly with variation of the
burr size; thus whenever the rotary file encounters a large burr, the
tangential force increases dramatically. For a given constant
feedrate, the normal force stays relatively constant regardless of
burr size variation. Figure 7 shows the proportionality of the
tangential cutting force, di, with MRR when an edge with 45°
chamfer is cut.

d¢ = K x MRR (16)

K depends on the material properties while MRR is a geometric
quantity.
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Figure 7: The tangential force is proportional to the Material
Removal Rate.

For a given depth of cut (0.055") on an edge without a burr, the



feedrate was varied and the MRR was measured. As shown in
Figure 7, the cutting process requires some minimum tangential
force to penetrate the material. The operating points for the
experiments are along the linear section of the plot in Figure 7.
Aohamfer i8 constant in this experiment, therefore the tangential
force is proportional to the feedrate. The faster the speed of the tool
along the edge, the larger the tangential contact force will be. The
slope of the line in Figure 7 (1016 nt/grams/sec) represents the
proportionality of the tangential force with the MRR. Considering
the specific mass of steel as 7 grams/cm®, the slope of the line is
equal to 7112 nt/cm>/sec and represents the proportionality of the
contact force with the volumetric MRR. Taking into account the
projected tangential area of 0.0098cm?, the proportionality of the
tangential cutting force with the velocity along the edge is
69.8nt/cm/sec. It requires 69.8nt of the tangential force to cut along
the edge with the speed of 1cm/sec. The dynamic behavior of the
process is represented by the relationship between the cutting force
and the speed along the edge. If the speed of the tool along the edge of
the part is kept constant, we expect an increase in the tangential
force when the cutting tool encounters a burr along the edge of the
part.

This section is devoted to the control of a robot for deburring
tasks only. Suppose the cutting tool is being moved along the edge of
a part with constant speed, by an industrial robot, the cutting force
will vary significantly because of the variation of the burr size.
This cutting force can be resolved into two orthogonal directions as
in Figure 8. If the contact force is large due to the size of the burr, a
separation of the robot from the part will occur. We desire to develop
a self tuning strategy such that the cutting force in the cutting
process becomes small when the cutter encounters a burr. A small
cutting force guarantees that the cutter stays very close to the part
without separation. Consider the deburring of a surface by a robot
manipulator; the objective is to use an end effector to smooth the
surface down to the commanded trajectory depicted by the dashed
line in Figure 8. It is intuitive to design a position control
mechanism for the manipulator with a small sensitivity in the
normal direction and a force control in the tangential direction.
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Figure 8: Deburring an Edge; Up Cutting

A trajectory control with small sensitivity in the normal
direction causes the endpoint of the grinder to reject the cutting
forces and stay very close to the commanded trajectory (dashed-
line). We define the sensitivity as the ratio of the robot motion to the
normal cutting force. Given the volume of the metal to be removed,
the desired tolerance in the normal direction prescribes an
approximate value for the sensitivity of the trajectory control in the
normal direction. In practice, one can develop large loop gains (by
utilization of several integrators) to gain small sensitivity in the
system. One natural way of developing small sensitivity in the
system is the utilization of the robot in such a configuration that the
robot has the highest effective inertia in the normal direction. The
high inertia in the normal direction causes the robot to stay very
"rigid” in response to interaction forces (1).

As described previously, the force necessary to cut in the
tangential direction at a constant traverse speed is approximately
proportional to the volume of the metal to be removed. Therefore, the
larger the burrs on the surface, the slower the manipulator must
move in the tangential direction to maintain a relatively constant
tangential force. This is necessary because the slower speed of the
endpoint along the surface implies a smaller volume of metal to be
removed per unit of time, and consequently, less force in the
tangential direction. To remove the metal from the surface, the
grinder should slow down in response to contact forces with large
burrs. The above explanation demonstrates that it is necessary for
the end effector to accommodate the interaction forces along the
tangential direction, which directly implies a force control system
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in the tangential direction. If a designer does not accommodate the
interaction forces by developing a force control system in the
tangential direction, the large burrs on the surface will produce
large contact forces in the tangential direction (equation 16).

It is desired to develop a force. control system in the
tangential direction so that by varying the velocity of the tool along
the edge of the part, a relatively constant cutting force is
maintained in the tangential direction. Two problems are
associated with large cutting forces in the tangential directions: 1)
the cutting tool may stall (if it does not break), and 2) a slight
deflection may develop in the endpoint position in the normal
direction, which might exceed the desired tolerance. This is due to
slight coupling of the force between the normal and tangential
directions.

The frequency spectrum of the roughness of the surface and
the desired translational speed of the robot along the surface
determine the frequency range of operation, w,. The frequency
range of the burr seen from the end effector is represented by, w.,
The faster the robot end point travels along the edge of the part, the
wider cwp will be. The bandwidth of the control system in the
tangential direction must be larger than ). In other words one
must travel with an average speed along the edge of the part such that
wy, falls below the bandwidth of the control system. It is clear that
the smaller the value for the commanded tangential force, the
slower the robot will move along the edge of the part. In fact, if the
commanded force in the tangential direction is very small, the tool
will not travel along the edge. This is true, because the controller
will drive the system with a small speed to reach to a small force. If
a large value is commanded for the force in the tangential
direction, then the tool will travel with a large contact force in the
tangential direction.

Figure 9 illustrates the architecture of the closed-loop control
system for the robot in the tangential direction. The detailed
description of each operator in Figure 9 is similar to the one shown
in Figure 4.
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Figure 9: The Closed-Loop Control in Tangential Direction for
Deburring
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Gy is the transfer function (or a mapping in the nonlinear
case) that represents the dynamic behavior of the robot with a
velocity controller in the tangential direction. The input to G is the
input velocity, ;. The robot velocity in the tangential direction is
represented by, vi. G can be calculated experimentally or
analytically. Note that G, is approximately equal to the unity for the
frequencies within its bandwidth. In other words, we assume that a
velocity controller has been designed for the robot such that it closely
follows all the trajectories with frequency components within the
bandwidth of G;. The bandwidth of G is represented by, w,,

Sy, is the sensitivity transfer function (or a mapping in the
nonlinear case), represents the relationship between the external
force on the end point and-the end point velocity. This velocity
deviation is due to either structural eompliance in the end effector
mechanism or the velocity controller compliance. To obtain good
velocity control, S; must be quite "small”. The notion of "small”
can be regarded in the singular value sense when S, is a transfer
function matrix. Lp-norm (6) can be considered to show the size of
S, in the nonlinear case. S; shows how good a velocity control is.

The dynamic behavior of the part is represented by, E;. In
the linear case, E; has been measured from the slope of the plot in
Figure 7 and its value is equal to 69.8 nt/cm/sec. In general, one
can consider a nonlinear function to characterize E;.

Hy, is the compensator to be designed. The input to this
compensator is the tangential deburring force. The compensator
output signal is subtracted from the input tangential velocity, vq, to
give the error signal, e,, as the input velocity for the robot



manipulator is in the tangential direction. The value of the
tangential force and the endpoint tangential velocity of the robot are
given by equations 17and 18.

di= E¢ (1+ S¢E¢+ GyHyEy)™ G¢ v, a7
From Figure 9, d,= E; v, therefore:
vy =(1+SE¢ + GyHeE¢ )™ Gy vq (18)

The goal is to choose a class of compensators, Hy, to shape the
impedance of the system, E¢(1+ S¢E¢+ G¢Hy E¢J"'Gy, in equation
17. The small value for H; in a particular direction implies a very
stiff velocity control system. In the limit, when H, is chosen to be
zero in a particular direction, the system behaves as a velocity
control in that direction. When H, is chosen to be a large number,
the system will be very compliant in tangential direction and small
contact forces will be generated. In the deburring process we plan to
modulate H; such that it has a large value in the direction tangential
to the part while the system is stable.

To guarantee the stability of the closed-loop system in the
linear case , H, must be chosen such that (11):

|Hel < |6¢7 (8¢ + 1VEQ] a9

where |.| denotes the magnitude of the transfer function. The
smaller the sensitivity of the robot manipulator, the smaller Hy
must be. Also from inequality 19, the more rigid the part is, the
smaller H; must be.

The XY table in Figure 10 is used to employ the above
tracking and deburring methods in deburring the parts with
unknown geometry. The workpiece to be deburred is mounted on the
XY table for maneuvering while the grinder is held vertically by a
stationary platform. The sample part is mounted on the table by a
sample holder. Depending on the geometry of the sample part,
various sample holders can be made. We admit that in the actual
deburring process, it may be better to move the grinder with the robot
while the part is on a stationary platform. Reference 9 describes an
active end effector that can be held by commercial robot
manipulators. As you see in Figure 10, two force sensors are used
in this operation. One force sensor is installed on the tool holder for
measurement of tracking force, t, while another force sensor is
installed under the part for measurement of the deburring force, d.
Note that the use of two sensors in this architecture is necessary. We
cannot use the normal deburring force in tracking an algorithm. If
the normal deburring force is used in tracking algorithm, the tool
will follow the contour of the burr, thus rounded burr will be develop.

force sensor
for tracking

X motor
~

The XY Table Used as a Two Dimensional Robot to
Maneuver the Part

Figure 10:

The XY table is interfaced to a microcomputer for control.
The control algorithms of the tracking and deburring were
implemented on the XY table via the p-computer. H and H, are
chosen to satisfy inequalities 14 and 19 . Because of the lead screw
mechanism in the XY table drive, S; and S,,, the sensitivity of the
XY table is very small. H; must be chosen such that
| GgHy| < | 1/E¢|. Since 1/E; is measured as 1/69.8 nt/cm/sec, Hy is
chosen such that the entire loop transfer function GiH; has the
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magnitude of less than 1/69.8 nt/cm/sec. The structure of H; is not
of importance as long as its magnitude is such that
| GeHe| < |1/E¢|. Figure 11 shows the frequency response of table,
(Gy), in the tangential direction. As seen in Figure 11, the input
velocity command is equal to the output velocity command for about
35 hertz. Hi can be chosen as any transfer function as long as
| GeHe] < |17E¢].
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Figure 11: Frequency Response of Gy

The objective of this experiment is to decrease the size of the
cutting forces in a edge deburring when the above method control is
employed to control the XY table. The edge of the sample part has
been filed to produce step burrs as shown in Figure 12.

depth of cut
-

rtarg file
X direction

sampte part step burr

Figure 12:

The Sample Part With Step Burr

Figure 13 shows the tangential and normal force when no force
control is employed in the tangential direction. The grinder is
driven with constant velocity along the edge of the part. As seen in
Figure 13, once the grinder encounters the burr, the tangential force
increased to 25 nt and the deburring tool stalled. Figure 14 shows the
tangential and normal forces when a force control strategy
according to Figure 9 is employed in deburring the same size burr
(depth of cut = .045"). H; in the direction normal to the part is zero.
H¢ in the direction tangential to the part is a large number and
satisfies inequality 19. The commanded tangential force is 5 nt and
the average speed is 0.088in/sec. Figure 15 shows the tangential and
normal force with the same commanded force in the tangential
direction when a burr with the depth of cut of .06" is used. Since the
tangential force remains constant at 5 nt, the average speed of the
system decreases from .088in/sec to .057in/sec. Since the
tangential force is kept constant by the force control system, the
MRR is constant also. The ratio of the velocities (.088/.057=1.6) is
inversely equal to the tangential area ratio (.06/.045)2=1.7
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Figure 13: No force control, tool stalled, depth of cut: .045"
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Figure 14 : Force control in effect
depth of cut: .045", average speed: .088 in/sec
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Figure 15: Force control in effect, depth of cut:

speed: .057 in/sec
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5. Summary and Conclusion

Two problems have been addressed in this paper: tracking
the two dimensional part contour, and control of the metal removal
process. The use of two sensors in this deburring method is
necessary. The tracking controller employs the force measured by
a force sensor to find the normal to the part surface, while the
deburring algorithm uses another set of contact forces (cutting
forces generated by the cutter) to develop a stable metal removal.
One cannot use the normal deburring force in tracking algorithm.
If the normal deburring force is used in tracking algorithm, the tool
will follow the contour of the burr and rounded burr will be
developed. A set of experimental results have been carried out to
verify the theoretical concepts.
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