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ABSTRACT

This article discusses the dynami-:s and design
of multiple-degree-of-freedom robotic systems built as
general purpose exercise machines for the human arm.
These machines may be programmed to give the human
arm the sensation of forces associated with various
arbitrary maneuvers. As examples, these machines can
give the human the sensation that he/she is
maneuvering a mass, or pushing onto a spring or a
damper. In general, the machines may be programmed
for any trajectory-dependent force. To illustrate and
verify the analysis of these machines, a two-degree-of-
freedom electrically-powered exercise machine was
designed and built at the Motion Control Laboratory of
the University of California-Berkeley.

1. MOTIVATION AND INTRODUCTION

This article describes the design and dynamics
of powered general-purpose exercise maciines. Figure
1 shows one example of such a machine: 1 two-degree-
of-freedom exercise machine built at the University of
California at Berkeley. This machine can be
programmed to impose arbitrary trajectcry-dependent
forces on the human arm. The human maneuvers the
machine in a vertical two-dimensional plane by holding
a handle at the exercise machine endpoint. (More
description on the experimental robot of Figure 1 is
given in Section 5.)

Contrasting it with existing passive exercise
machines makes clear the advantages f the active
exercise machine discussed in this paper. The main
advantage of this general-purpose powered active
exercise machine is its flexibility: it can be
programmed to give the human arm a sensation of
various desired forces (i.e., resistance; over various
arbitrary trajectories. Existing passive exercise
machines do not offer such flexibility in -:eir dynamic
behavior. For example, existing weight aachines can
only produce constant forces (i.e., gravity) for the
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users, and users must change steel disks to change the
machine's resistance. Also, existing weight machines
cannot produce behaviors similar to those of a spring or
a damper. To get such behaviors one must use another
exercise machine. Consider another example of a
passive system: a rowing machine. The user rotates a
flywheel by pulling two ropes; the forces imposed on
the user's arms are function of the flywheel inertia and
acceleration. This machine cannot impose constant
forces on the human. The user has to change to a
weight machine if constant forces are preferred. *

The general-purpose powered active exercise
machine discussed in this article lets the user choose a
variety of forces over various trajectories. For example,
the machine can be programmed to give the human the
sensation that he/she is maneuvering a mass, or
pushing onto a spring or onto a damper. There is no
physical weight, damper or spring in the active
machine; the entire dynamic behavior of the machine is
created by the computer. The machine's computer
creates a virtual dynamic behavior for the user.

Three elements contribute to the dynamics of
these systems: the human, the exercise machine and
the load being maneuvered. (Including the load may not
seem mandatory in the design of such exercise machines
at this point. However, as will be clarified later, the
installation of a load and the direct measurement of the
load force on the machine allow for the development of
a more general class of performance for these
machines.) The motion commands to the exercise
machine are taken directly from two sets of interaction
forces: one between the human and the machine, and
one between the load and the machine. While the
human interaction force helps move the exercise
machine, the load interaction force impedes the machine
motion.

+ This research is supported by a grant form NSF under
contract number BCS-9196183.
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Figure 1: The two-degree-of-freedom general
purpose exercise machine built at the
University of California, Berkeley. The
human maneuvers the machine in a vertical
two-dimensional plane by holding a handle at
the exercise machine endpoint.

2. DYNAMICS

This section describes the dynam:c behavior of
the exercise machine and the human arm, which are
combined in Figure 2.

It is assumed that the exercise machine
primarily has a closed-loop position controller, which
is called the primary stabilizing controller. The
resulting closed-loop system is called the primary
closed-loop system. Exact dynamic models for the
exercise machine are difficult to produce because of
uncertainties in the dynamics of the machine actuators,
transmissions and structure. These uncertainties
become a major barrier to the achievement of the desired
machine performance, especially when human dynamics
are coupled with the machine dynam‘cs in actual
machine maneuvers. The exercise machine's primary
stabilizing controller minimizes the uncertainties in the
machine dynamics and creates a more definite and linear
dynamic model for the machine. This linear model
may then be used to design other controllers that
operate on forces f}, (human force) and f; (load force).

For the experimental machine employed ir. this research
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effort, the computed-torque method along with a PD
controller (1, 2, 14] is used as the primary stabilizing
controller to create a more definite and linear dynamics
for the machine.

Regardless of the type of primary stabilizing
controller, the exercise machine position, p, results
from two inputs: 1) the desired position command,
Pdes. and 2) the forces imposed on the exercise
machine. The transfer function matrix G represents the
primary closed-loop position system which maps pdes
to the machine position, p. Two forces are imposed on
the machine: fh is imposed by the human, and fe is
imposed by the load. Sp, an exercise machine
sensitivity transfer function, maps the human force, fh,
onto the machine position, p. Similarly, Se, an
exercise machine sensitivity transfer function, maps the
load force, fe, onto the machine position, p. If the
primary stabilizing controller is designed so that Sy, and
S are small, the exercise machine has only a small
response to the imposed forces fy, and fo. A high gain
controller in the primary stabilizing controller results in
small Sy, and S, and consequently a small machine
response to fj, and f.. Using G, Se¢ and Sp, equation 1
represents the dynamic behavior of the exercise
machine.

P =G pges* Shfh+ Sefe ()

The middle part of the block diagram in Figure
2 represents the exercise machine model (i.e., equation
1) interacting with the human and the load. The upper
left part of the block diagram represents the human
dynamics. The human arm's force on the exercise
machine, f},, is a function of both the human muscle
forces, uy,, and the position of the machine, p. Thus,
the machine's motion may be considered to be a
position disturbance occurring on the force-controlled
human arm. If the machine is stationary (i.e., p = 0),
then the force imposed on the machine is solely a
function of the human muscle force command produced
by the central nervous system. Conversely, if the
exercise machine is in motion and up = 0, then the

force imposed on the machine is solely a function of
the human arm impedance, H(p). H is a nonlinear
operator representing the human arm impedance as a
function of the human arm configuration; H is
determined primarily by the physical properties of the
human arm [7, 8, 13, 15]. Based on the above,
equation 2 represents a dynamic model of the human
arm.

fo = up - H(p) @

The specific form of up, is not known other than it

results from human muscle force on the exercise
machine {4, 5].



It is assumed that the exercise machine is
maneuvering a small load. The load force impedes the
machine motion. The exercise machine controller
translates the two measured interaction forces into a
motion command for the machine to create a desired
relationship between the human forces and the load
forces. E is a nonlinear operator representing the load
dynamics. fexy is the equivalent of all the external
forces imposed on the load which do no: depend on p
and other system variables. Equation 3 provides a
general expression for the force imposed on the exercise
machine, fe, as a function of p.
fe = - E(p) + fext 6)
In the example of accelerating a point mass m along a
horizontal line, the load force, fe, can be characterized
by fe = ms2 p. Inthiscase E = ms? and fext =0 where
p is the mass position and s is the Laplace operator. If
the load is large and cannot be represented by a point
mass, then E can be calculated using Lagrangian
formulation.

The diagram of Figure 2 includes two linear
controllers, o(s) and K(s), which modulate the forces fj,
and fo. a and K (which are implemented on a
computer) must be designed to produce a desired

-—— - -y

| \
W ) fn
| ] . .
\ \_ _fexercise machine
g o :
3] o \ performance
g [ \ filter
\ H v ]S® ' o.(s)
\ [} ]
. ] p . + : P +
: ¢—| G(s) f+—= K(s)
Al St \
: : ] stability
E s® : controller
! '
: '

1
)
)
!
1
I
I
!
|

- -

fe

"y " load T 7

Figure 2: The overall block diagram for the
exercise machine. The machine dynamics,
which are linearized by the primary
stabilizing controller, are represented by G, Sy,
and S,. The human and the load dynamics

are represented by two nonlinear ojerators H
and E. Two linear controllers o and K
modulate the forces fp, and f,.

3. CONTROL

To understand the role of controslers o and K,
assume for a moment that neither controlier is included
in the system. If the commanded position, pgeg, the

234

human muscle forces, up, and the external forces, fayy,
all equal zero, then the exercise machine position, p,
equals zero, and no motion is transmitted to the load.
This is the case when the human is holding the exercise
machine without intending to maneuver it. If the
human decides to initiate a maneuver, then uy, takes on
a nonzero value, and an exercise machine motion
develops from fp,. The resulting motion is small if Sy,
is small. In other words, the human may not have
enough strength to overcome the exercise machine's
primary closed-loop controller.

To increase the human’s effective strength, the
exercise machine’s effective sensitivity to f, must be
increased by measuring the human force, fh, and

passing it through the controllers o and K. Figure 2
shows that GKa, parallel with Sy, increases the
effective sensitivity of the machine to f,. K and a
must be chosen to ensure the stability and performance
of the closed-loop exercise machine system.

Next, the following question is addressed:
how should the exercise machine perform in a particular
maneuver? The following example illustrates a simple
specification for the exercise machine performance. The
human uses the machine to maneuver a free mass in
space. A reasonable performance specification for this
example would state the level of amplification of the
human force which is applied to the free mass. If the
force amplification is large, a small force applied by the
human results in a large force being applied to the free
mass. If the amplification is small, a small force
applied by the human results in a small force being
applied to the free mass. Consequently, if the
amplification is large, the human "feels" only a small
percentage of the interaction force with the free mass.
Most importantly, the human still retains a sensation
of the dynamic characteristics of the free mass, yet the
load essentially "feels" lighter or heavier as exercise
required.

With these heuristic ideas of system
performance, the exercise machine performance is

captured in equation 4 where fh* is the human force
applied to maneuver the machine when no load is
present. R is the performance matrix, and [O,mp] is the
frequency range of the human arm motion.
(h-fh) =Rf forall e [0wp) @

Equality 4 guarantees that (f}, - fh*), the portion of the
human force that is actually applied to maneuver the
load, is proportional to the load force, fe. The
performance matrix R is an nxn linear transfer function
matrix. Suppose R is chosen as a diagonal matrix with
all members having magnitudes smaller than unity over

some bounded frequency range. Then the human force
is smaller than the load force by a factor of R. Suppose



R is chosen as a diagonal matrix with all members
having magnitudes greater than unity. Then the human
force is larger than the load force by a factor of R. In a
more complex example, the transfer function matrix R
may be selected to represent linear passive dynamic
systems.

By inspecting Figure 2, the exercise machine
position is written as a function of f}, and fe.
p=(GKa+Sy)fh+(GK+S;)fe 5)

Now suppose that the human maneuvers the exercise
machine through the same trajectory indicated by p in
equation 5 except without any load. The no-load
human force, fi*, is then obtained by inspection of
Figure 2 where E = 0 and fox( = O:
p=(GKa+S8y)fji* (©)]
Equating the trajectories from equations 5 and 6 results
in equation 7.

@ - f*)=- (GKa+Sy)  (GK+Se) fs(7)

Comparing equations 4 and 7 shows that to guarantee
the performance represented by R in equation 4,
inequality 8 must be satisfied.

omax [(GKo+Sp) 7t (GK+S.)-Rl<e
for all € [0, wp] (8)

where G4 represents the maximum singular value.
€ represents a small positive number chosen by the
designer to denote the degree of precision required for
the specified performance within the frequencies [0,
wpl. A small value for € (e.g., 0.01) incicates a close
proximity of the actual system perfor.1ance to the
specified performance R (e.g., within a 1% error). Note
that the human and load dynamics, H and E, are absent
from inequality 8. Thus, achievement of the specified
performance R depends only on the exercise machine
dynamic behavior (G, Se, Sp) and on the controllers (K,
o), and not on the particular human operator and load.
Assuming that R is selected so Rl always exists, o is
chosen to be equal to R-1, Substituting R-1 for o in
inequality 8 shows that any K which satisfies inequality
9 also satisfies 8.

Omax (GK) >
for all 0 € [0, cop]

Smax (Se - Sh R) Omax (R)
£

©®

Inequality 9 suggests that, since € is a small
number, the designer must choose K to be a transfer
function matrix with large magnitude to satisfy
inequality 9 for frequencies we [0, u)p] and for a given
€, R, Sy and S.. The smaller € is che: :n to be, the
larger K must be to achieve the desired pe formance. K
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may not be arbitrarily very large: the choice of K must
also guarantee the closed-loop stability of the system
shown in Figure 2, as discussed in the next section.

4. STABILITY

The selection of K is particularly important
since H and E generally contain nonlinear dynamic
components. The following questions illuminate our
approach to the design of K. In designing K, is it
possible to work with a human and a load with linear
dynamics (represented by Hg and E) instead of the
nonlinear dynamics represented by operators H and E?
If the answer is yes, then what properties should H,, and
Eg have so that the designed K both satisfies inequality
9 and stabilizes the Figure 2 system in the presence of a
family of nonlinear operators H and E ?

The block diagram of Figure 2 is transformed
into the block diagram of Figure 3 in order to group the
nonlinear operators, H and E, into one block on the
diagram.

e
H [s, 8.1
15

O |
Figure 3: Simplified block diagram of Figure
2. 1is a unity matrix.

(o 1]}—{ K

Sh and S represent the sensitivities of the
exercise machine position to the human and load forces.
G, Sy, and S, depend on the nature of the machine's
primary stabilizing controller. If a primary stabilizing
controller with a large position loop-gain or integral
control is chosen to insure small steady state errors,
then Sy and S are extremely small compared to G,
approaching zero at steady-state. Prototype exercise
machine designs have produced sensitivities on the order
of 103 to 100 times smaller than G [9, 10]. Therefore
Sp and Sg are disregarded in the following stability
analysis. Figure 4 presents the resulting simplified
stability diagram.

ow + f ext P

+

oH+E

Figure 4: In systems with very small
sensitivity transfer functions, S, and Sy, are
much smaller than G and their effect on the

overall system dynamics is negligible.



If Hy and E, are assumed tc represent a
particular set of linear human and load dynamics,
equation 10 represents the general form of H and E
where A is the stable nonlinear part of the dynamics. .
aH(p) + E(p) = [0 Hy + Eg] p + A(D) (10)

Note that [0 Hy + Eq] is a tranfer function

matrix operating on p. The block diagram of Figure 4
can be transformed into the block diagram of Figure 5.

e uy +fext

o Uy o K p
Ge=[I+GK(aH,+E))] GK

) b

e

A g

Figure 5: Ais the stable nonlinear operator
representing the nonlinear humar and load
dynamics.

With respect to Figure 5, the design of K is approached
as follows. A stabilizing controller K must be designed
for a set of linear H, and E, so that the closed-loop
system of Figure 5 remains stable and inequality 9
(indicating the performance) is satisfied. " his controller
must guarantee enough stability robustness for all
bounded values of H and E. Therefore the goal is to
find a particular class of Hy and E, and a stabilizing
controller K that together yield the largest stability
robustness for a given largest A. Equation 11
represents the forward loop in Figure 5b.

G =[1+GK(aH,+Eg 1" GK an

The stability of each element in Figure 5b is
described by inequalities 12, 13 and 14:

locup + fexg lloo < Bjn < o0

"input is Lo bounded” (12)
lello € ApllPlle + BA
"A is Lo stable" (13)
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1P llo < Agcllello + Bge

"Gy is Lo Stable” 14
A and B are finite positive constants that indicate L,
stable mappings. The closed-loop system of Figure 5
is Lo, stable if the norm of the output p is bounded.
According to the Small Gain Theorem [6], this is
guaranteed if inequality 15 is satisfied.
}"GC Ap <1 (15)

The human arm impedance H changes from
person to person and also within one person over time.
This leads to large variations for Ap. To obtain an
intuitive feel for the stability condition in inequality
15, evaluation of inequality 15 within the the operating
range of the exercise machine system is useful. If K is
designed as a very large transfer function in order to
guarantee machine system performance (as prescribed by
inequality 9), then equation 11, within the controller
bandwidth, may be approximated by:

Ge =laHy+Egl  forall® € [0.wp] (16)
One must choose the largest load that an exercise
machine can manipulate to be E, the strongest human
impedance to be Hy,, and the greatest force amplification
as a performance specification to be oy ,4. Then,
[omax Ho + Egl will be larger, and G and
consequently Ag. will be smaller. If Ag, is smaller,
then, according to inequality 15, A takes on larger
values. In other words, if the largest values of a, H
and E are used to design a stabilizing K (i.e., one that
guarantees inequality 9), then the closed-loop system
will remain stable in the presence of the large variations
of human and load dynamics represented by a large A5.

Inequality 9 also teaches that a large K is
needed to guarantee achievement of the system
performance. Inspection of Figure 4 shows that
choosing a large [0y, ,xHy+E] for stability robustness
(as discussed above) restricts the designer's choices for a
large K. This is true because large values for both K
and [oyax Hg + Eg] may cause a large loop gain and
consequently an unstable system in Figure 4.
Therefore, although choosing a large value for [0y ax
Hy, + Eg] leads 1o stability robustness, it may prohibit
the designer's choosing a large K to satisfy the
performance specification in inequality 9. Thus, the
better understood the load and human dynamics are, the
smaller Ap will be; this leaves more room to increase
K and gain more precision in achieving the desired
performance as stated by inequality 9. Similar stability
analysis is given for robotic compliant maneuvers and
force control systems [11, 12].



5. EXPERIMENTAL ANALYSIS
Exercise Machine

The prototype two-degree-of-freedom electric
direct-drive exercise machine (Figure 1 and Figure 6) is
used to verify experimentally the theoretical predictions
of the machine's stability and performance.

rx motor 2 } motor 1
y

load (steel block)
force sensors

,I_D/A |- -— .»
: L [ H )

! \
: K(e) ale) 1,
\ \
\ )

computer

Figure 6: The experimental exercise machine
used to verify the analysis.

Figure 6 shows the seven-bar-linkage
mechanism used for our prototype laboratory exercise
machine. This machine has two degrees of freedom
corresponding to a shoulder and an elbow. Force
sensors are mounted at the human-machine and
machine-load interfaces. Motor 2 rotates link 4 causing
the main arm (link 6) to move up and down via a four-
bar linkage (links 4, 5, 6, and 3 as the ground link). In
another four-bar linkage (links 1, 2, 3, and 7), motor 1
rotates link 1 causing the follower link (link 3) and the
main arm (link 6) to move in and out. Both motors 1
and 2 are connected to bracket 7 which is mounted on a
platform at the same height as the human shoulder. A
gripper is mounted on link 6 where the operator force,
f,» is measured along two directions. Each link is
machined as one solid piece rather than as an assembly
of smaller parts. Employing the primary controller, the
exercise machine closed-loop transfer furction G in the
Cartesian coordinate frame along the x- and y-directions
of Figure 6 is:

G(s) = 1.2516s + 2.079

0.002s3 + 52 + 1.2516s + 2.079
Newton/Newton

_Human Arm

The human arm dynamics do not affect
performance (defined by inequality 9) but do play a
major role in exercise machine stability. Several
experiments were conducted to measure the human arm
impedance H. Then the largest of these impedances was
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chosen to be H, in the stability analysis. In the
experiments to determine the largest H, the subject
grasped a handle on the exercise machine. The machine
was commanded to oscillate via sinusoidal functions.
The frequency and amplitude of oscillation were changed
continuously by the software. (See Reference [3] for
more detailed information about the nature of these
experiments.) The human operator tried to move
his/her hand to follow the machine so that zero contact
force would be maintained between the hand and the
machine. The human arm, when trying to maintain
zero contact forces on the handle, cannot keep up with
the high-frequency motion of the exercise machine. At
high frequencies, the forearm is moved without the
benefit of active feedback from the central nervous
system. In other words, in the high frequency region,
we observe that the impedance behaves like a purely
inertial load. Thus, large contact forces and
consequently a large H are expected at high frequencies.
Since this force is equal to the product of the exercise
machine acceleration and human arm inertia (Newton's
Second Law), at least a second-order transfer function is
expected for H at high frequencies. At low frequencies
(in particular at DC), the operator can follow the
machine motion comfortably, and can establish almost
constant contact forces between the hand and the
exercise machine. Thus, small contact forces at all
machine positions and consequently a constant transfer
function for H are expected at low frequencies.

Figure 7 shows the experimental values and
the fitted transfer functions for two different
experiments. In the first experiment (shown by plus
signs), the subject holds the machine handle loosely.
In the second experiment (shown by squares), the
subject holds the machine handle very tightly. At low
frequencies, the human arm impedance is smaller when
the subject holds the handle loosely than when the
subject holds the handle very tightly. Observing the
slope of 40 db/dec for both plots show an inertial
behavior at high frequencies. The largest impedance
(shown by squares) is chosen for use in the stability
analysis.

S

2
Ho= 121 (3¢5 + + 1) Ibfft (18)
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Figure 7 The Experimental and Theoretical
Plot of H.



Load

The mass that was installed on the exercise
machine endpoint is 33.82 Newtons at a distance of 0.5
meter from the elbow joint as shown in Figure 6. The
handle was mounted at 0.3 meter from the elbow joint.
The equivalent of the heaviest load dynamics needed for
stability analysis is represented by equation 19.

E,=9.08s2  newton/meter (19)
Performance
Matrix R in equation 20 is chosen as the
performance matrix in the Cartesian coordinate frame.
[8 0
Rl =a-= (20)
0] 5

The above performance specification has force
amplifications of 8 times in the x-direction and 5 times
in the y-direction. The human operator maneuvers the
exercise machine irregularly (i.e., randomly). Figures 8
and 9 show fg versus (fh- fh*) along the x and y
directions where the slope of -8 and -5 represent the
force amplification by a factor of 8 and 5 along the x
and y directions.

=
20} 4

:E 1s
g ol
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‘. 23 2 15 =] 05

f,- % (Newton)

Figure 8: f, versus (fh- fn") along the x-
direction at o= -8.

1), (Newton)
®

4 35 3 s Z s o D5

fh— f“'h {(Newton)

Figure 9: f, versus (fp- fn") alorg the y-
direction at a = -5.
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