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Abstract—The Berkeley lower extremity exoskeleton (BLEEX) is an autonomous robotic device
whose function is to increase the strength and endurance of a human pilot. In order to achieve an
exoskeleton controller which reacts compliantly to external forces, an accurate model of the dynamics
of the system is required. In this report, a series of system identification experiments was designed
and carried out for BLEEX. As well as determining the mass and inertia properties of the segments of
the legs, various non-ideal elements, such as friction, stiffness and damping forces, are identified. The
resulting dynamic model is found to be significantly more accurate than the original model predicted
from the designs of the robot.

Keywords: BLEEX; exoskeleton; control; system identification.

1. INTRODUCTION

The goal of the exoskeleton project at UC Berkeley is to develop fundamental
technologies associated with the design and control of energetically autonomous
lower extremity exoskeletons that augment human strength and endurance during
locomotion. The first generation lower extremity exoskeleton (commonly referred
to as BLEEX) is comprised of two powered anthropomorphic legs, a power unit
and a backpack-like frame on which a variety of heavy loads can be mounted.
This system provides its pilot (i.e., the wearer) with the ability to carry significant
loads on his/her back with minimal effort over any type of terrain. BLEEX allows
the pilot to comfortably squat, bend, swing from side to side, twist, and walk on
ascending and descending slopes, while also offering the ability to step over and
under obstructions while carrying equipment and supplies. BLEEX has numerous
potential applications; it can provide soldiers, disaster relief workers, wildfire
fighters and other emergency personnel with the ability to carry heavy loads, such
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Figure 1. BLEEX.

as food, rescue equipment, first-aid supplies, communications gear and weaponry,
without the strain typically associated with demanding labour.

BLEEX was first unveiled in 2004, at UC Berkeley’s Human Engineering and
Robotics Laboratory (Fig. 1). In this initial model, BLEEX offered a carrying
capacity of 34 kg (75 lb), with weight in excess of that allowance being supported
by the pilot.

The effectiveness of the lower extremity exoskeleton is a direct result of the con-
trol system’s ability to leverage the human intellect to provide balance, navigation
and path-planning while ensuring that the exoskeleton actuators provide most of
the strength necessary for supporting payload and walking. In operation, the exo-
skeleton becomes transparent to the pilot and there is no need to train or learn any
type of interface to use the robot.

The control algorithm ensures that the exoskeleton always moves in concert with
the pilot with minimal interaction force between the two and was first presented in
Ref. [1]. It needs no direct measurements from the pilot or the human–machine
interface (e.g., no force sensors between the two). The controller estimates, based
on measurements from the exoskeleton structure only, how to move so that the pilot
feels very little force. This control scheme is an effective method of generating
locomotion when the contact location between the pilot and the exoskeleton is
unknown and unpredictable (i.e., the exoskeleton and the pilot are in contact in
variety of places).
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This control method differs from compliance control methods employed for upper
extremity exoskeletons [2–4] and haptic systems [5, 6] because it requires no force
sensor between the wearer and the exoskeleton. Taking into account this new
approach, our goal was to develop a control system for BLEEX with high sensitivity.
Systems with high sensitivity to external forces and torques are not robust to
variations, and therefore the precision of the system performance is proportional
to the precision of the exoskeleton dynamic model.

The dynamics of the exoskeleton can be predicted theoretically using the simpli-
fied model of the robot leg as a three-segment manipulator, with the mass and inertia
properties of the robot links predicted from design models. However, a large num-
ber of factors affecting the dynamics cannot be predicted from this approach. Many
parts of the robot cannot be modeled accurately, e.g., the dynamics of the hosing
and wiring, and the internal dynamics of the actuators. Additionally, there are many
unknown forces acting within the robot, caused by friction, stiffness and damping
of various elements.

Therefore, the model of the robot must be obtained experimentally. This report
discusses the identification of the dynamics of a leg of the robot which is not in
contact with the ground. This is called the swing mode of the leg, as opposed
to the stance mode when the foot is touching the ground. During walking, the
motions of a leg while in swing mode are generally faster and larger than those
while in stance mode. Therefore, it is more important to have compliancy in the
swing mode. For this reason, the system identification was first performed only for
swing mode. However, the system identification methods used for the swing mode
dynamics could be adapted to be used for the stance mode dynamics.

2. CONTROLLER IMPLEMENTATION

The BLEEX control algorithm, which has been presented in detail in Refs [1, 7],
ensures that the exoskeleton always moves in concert with the pilot. In addition, it
must maintain minimal interaction force between the two in order to be comfortable
and non-fatiguing. The controller needs no direct measurements from the pilot or
the human–machine interface (e.g., no force sensors between the two). Instead, it
estimates, based on measurements from the exoskeleton structure only, how to move
so that the pilot feels very little force. This control scheme is a particularly effective
method of generating locomotion when the contact location between the pilot and
the exoskeleton is unknown and unpredictable (i.e., the exoskeleton and the pilot
are in contact in variety of places).

In order to move with the pilot, the controller must give the exoskeleton a large
sensitivity to the small forces and torques applied by the pilot. To achieve this, the
exoskeleton controller uses the inverse of the exoskeleton dynamics, G, as a positive
feedback such that the loop gain for the exoskeleton approaches unity from below
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Figure 2. The two feedback loops in this diagram represent the overall motion of the human and
exoskeleton (from Ref. [7]). The upper feedback loop shows how the pilot moves the exoskeleton
through applied forces. The lower positive feedback loop shows how the controller drives the
exoskeleton.

(slightly less than 1). Based on the block diagram in Fig. 2, this can be written as:

SNEW = v

d
= S

1 − GC
, (1)

where C is chosen as:

C = (1 − α−1)G−1 (2)

and α is the amplification number greater than unity. The sensitivity transfer
function, S, represents how the equivalent human torque affects the exoskeleton
angular velocity. S maps the equivalent pilot torque, d, onto the exoskeleton
velocity, v. The resulting torque from pilot on the exoskeleton, d, is not an
exogenous input; it is a function of the pilot dynamics, H , and variables such as
position and velocity of the pilot and the exoskeleton legs.

Figure 2 shows an important characteristic for human exoskeleton control: two
distinct feedback loops in the system. The upper feedback loop represents how
forces and torques from the pilot affect the exoskeleton and is internal to the human.
The lower loop shows how the controlled feedback loop affects the exoskeleton.
While the lower feedback loop is positive (potentially destabilizing), the upper
human feedback loop stabilizes the overall system of pilot and exoskeleton taken as
a whole. This controller, originally discussed in Ref. [7], provides high sensitivity to
pilot input and is stable when worn by the pilot provided parameter uncertainties are
kept to a minimum. To ensure model accuracy, system identification is employed to
accurately obtain model parameters.

2.1. BLEEX mechanical system

BLEEX, as shown in Fig. 1, is a system with many degrees of freedom (d.o.f.)
and which requires different dynamic models depending on the ground contact
configuration of the left and right legs. Each BLEEX leg has 3 d.o.f. at the hip,
1 d.o.f. at the knee and 3 d.o.f. at the ankle, of which only four are powered d.o.f.:
hip, knee and ankle joints in the sagittal plane, and the hip abduction/adduction
joints. See Refs [8, 9] for details of the BLEEX mechanical design.

The pilot and BLEEX have rigid mechanical connections at the torso and the feet;
everywhere else, the pilot and BLEEX have compliant or periodic contact. The
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connection at the torso is made using an adjustable compliant vest that distributes
the forces between BLEEX and the pilot, thereby preventing abrasion. This
compliant pilot vest attaches to the rigid metal spine of the BLEEX torso.

The pilot’s shoes or boots attach to the BLEEX feet using a modified quick-
release binding mechanism similar to snowboard bindings. The binding cleat on
the modified pilot boot does not interfere with normal wear when the pilot is
unclipped from BLEEX. The BLEEX foot is composed of a rigid heel section
with the binding, and a compliant, but load-bearing, toe section that begins mid
foot and extends to the toe. The BLEEX foot has a compressible rubber sole
with a tread pattern that provides both shockabsorption and traction while walking.
The rubber sole of the BLEEX foot contains multiple embedded pressure sensors
(digital on/off information) that are used to detect the trajectory of the BLEEX
ground reaction force starting from ‘heel-strike’ to ‘toe-off’ in the walking gait
cycle. This information is used in the BLEEX controller to identify the BLEEX
foot configuration relative to the ground and subsequently choose the appropriate
model for the BLEEX inverse dynamics.

BLEEX is powered via a compact portable hybrid output power supply contained
in the backpack. Several different portable BLEEX power supplies have been
designed by our group for different applications and environments. Each provides
hydraulic flow and pressure for the actuators, and generates electric power for
the sensors, network and control computer. Details of the design, testing and
performance of the BLEEX power supplies can be found in Refs [10–12]. A
description of the BLEEX control network and electronics can be found in Refs [13,
14].

2.2. Dynamic modeling

We consider BLEEX to have three distinct phases during walking (shown in Fig. 3)
which manifest to three different dynamic models (percentage of the gait cycle
indicated):

• Single support: one leg is in the stance configuration while another leg is in swing
(40% of gait cycle).

Figure 3. Three phases of the BLEEX walking gait cycle.
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• Double support: both legs are in stance configuration and situated flat on the
ground (20% of gait cycle).

• Double support with one redundancy: both legs are in stance configuration, but
one leg is situated flat on the ground while the other one is not (40% of gait
cycle).

Using the information from the sensors in the foot sole, the controller determines
which phase BLEEX is operating in and which of the three dynamic models apply.

2.3. Single stance

In the single-support phase, BLEEX is modeled as the 7 d.o.f. serial link mechanism
in the sagittal plane as shown in Fig. 4. The dynamics of BLEEX can be written in
the general form as:

M(θ)θ̈ + C(θ, θ̇)θ̇ + P(θ) = T + d, (3)

where

θ =




θ1

θ2
...

θ7


 , T =




0
T2
...

T7


 . (4)

M(θ) is a 7 × 7 inertia matrix and is a function of θ ; C(θ, θ̇) is a 7 × 7 centripetal
and Coriolis matrix, and is a function of θ and θ̇ ; and P(θ) is a 7 × 1 vector of
gravitational torques and is a function of θ only. T is the 7 × 1 actuator torque
vector with its first element set to zero since there is no actuator associated with
joint angle θ1 (i.e., the angle between the BLEEX foot and the ground). d is the
effective 7 × 1 torque vector imposed by the pilot on BLEEX at various locations.
According to (2), we choose the controller to be the inverse of the BLEEX dynamics

Figure 4. Sagittal plane representation of BLEEX in the single-support phase.
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scaled by (1 − α−1), where α is the amplification number:

T = (1 − α−1)
[
M̂(θ)θ̈ + Ĉ(θ, θ̇)θ̇

] + P̂ (θ). (5)

M̂(θ), Ĉ(θ, θ̇) and P̂ (θ) are the estimates of the inertia matrix, the Coriolis matrix
and the gravity vector, respectively, for the system shown in Fig. 4. Note that (5)
results in a 7×1 actuator torque. Since there is no actuator between the BLEEX foot
and the ground, the torque prescribed by the first element of T must be provided by
the pilot. Substituting T from (5) into (3) yields:

M(θ)θ̈ + C(θ, θ̇)θ̇ + P(θ) = (1 − α−1)
[
M̂(θ)θ̈ + Ĉ(θ, θ̇)θ̇

] + P̂ (θ) + d. (6)

In the limit when M̂(θ) = M(θ), Ĉ(θ, θ̇) = C(θ, θ̇), P̂ (θ) = P(θ) and α is
sufficiently large, d will approach zero, meaning the pilot can walk as if BLEEX
did not exist. However, it can be seen from (6) that the force felt by the pilot is a
function of α, and the accuracy of the estimates M̂(θ), Ĉ(θ, θ̇) and P̂ (θ). In general,
the more accurately the system is modeled, the less the human force, d, will be. The
accuracy of this model is dependent upon the accuracy of the model parameters for
the mass, inertia, centre of gravity location and geometry of each link.

2.4. Double support

In the double-support phase, both BLEEX feet are flat on the ground. The
exoskeleton is modeled as two planar 3-d.o.f. serial link mechanisms that are
connected to each other along their uppermost link (i.e., the torso) as shown in
Fig. 5a. The dynamics for these serial links are represented by the equations:

ML(mTL, θL)θ̈L + CL(mTL, θL, θ̇L)θ̇L + PL(mTL, θL) = TL + dL, (7)

MR(mTR, θR)θ̈R + CR(mTR, θR, θ̇R)θ̇R + PR(mTR, θR) = TR + dR, (8)

Figure 5. Sagittal plane representation of BLEEX in the double-support phase (left) and the double-
support phase with one redundancy (right).
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where:

θL =



θL1

θL2

θL3


 , θR =




θR1

θR2

θR3


 . (9)

mTL and mTR are effective torso masses supported by each leg, and mT is the total
torso mass such that:

mT = mTL + mTR. (10)

The contributions of mT on each leg (i.e. mTL and mTR) are chosen as functions of
the location of the torso center of gravity relative to the locations of the ankles such
that:

mTR

mTL
= xTL

xTR
, (11)

where xTL is the horizontal distance between the torso center of gravity and the left
ankle, and xTR is the horizontal distance between the torso center of gravity and
the right ankle. For example, if the center of gravity of the torso is located directly
above the right leg, then mTL = 0 and mTR = mT. Similar to the single-stance
phase, the controllers are chosen such that:

TL = (1 − α−1)
[
M̂L(mTL, θL)θ̈L + ĈL(mTL, θL, θ̇L)θ̇L

] + P̂L(mTL, θL), (12)

TR = (1 − α−1)
[
M̂R(mTR, θR)θ̈R + ĈR(mTR, θR, θ̇R)θ̇R

] + P̂R(mTR, θR). (13)

Needless to say, (11) is valid only for quasi-static conditions where the accelera-
tions and velocities are small. This is in fact the case, since in the double-support
phase both legs are on the ground, and BLEEX’s angular acceleration and velocities
are quite small.

2.5. Double support with one redundancy

Double support with one redundancy is modeled as a 3-d.o.f. serial link mechanism
for the stance leg with the foot flat on the ground and a 4-d.o.f. serial link mechanism
for the stance leg that is not completely on the ground (Fig. 5b). Each serial link
supports a portion of the torso weight. The dynamics for these serial links are
similar to (7) and (8), with the exception that the redundant leg equation represents
4 as opposed to 3 d.o.f. For the specific instant shown in Fig. 5b, the left leg has 4
d.o.f. and the right leg has 3 d.o.f.

Similar to the double-support case, the effective torso mass supported by each leg
is computed by (11). Controllers for this case can be chosen in the same manner as
(12) and (13). Note that the actuator torque vector associated with the leg that has
4 d.o.f. (e.g. TL for the case shown in Fig. 5b) is a 4 × 1 vector. As in the single-
support phase, the torque prescribed by the first element of T must be provided by
the pilot because there is no actuator between the BLEEX foot and the ground. As
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the pilot walks, BLEEX transitions through the various phases shown in Fig. 3. The
foot sole pressure sensors detect which leg has 4 d.o.f. and which leg has 3 d.o.f.,
and the controller then chooses the appropriate algorithm for each leg.

3. EXOSKELETON DYNAMICS

3.1. Three-segment model

For the purposes of the system identification experiments in this article, a simplified
case of the dynamics will be considered in which the two legs have just 3 d.o.f.: a
hip joint, a knee joint and an ankle joint (each of which is actuated within the sagittal
plane by a hydraulic piston commanded by the controller). Only the dynamics of
the leg while in swing mode will be investigated, so the torso can be regarded as
being in a fixed position.

Each leg of the exoskeleton can be modeled as a two-dimensional three-segment
manipulator, as described in Ref. [15]. A diagram of the simplified model is shown
in Fig. 6. The length of the thigh link is Lt and the length of the shank link is Ls.
The position of the center of gravity of the thigh is given by LGt and hGt , that of the
shank by LGs and hGs , and that of the foot by LGf and hGf , as shown.

The joint angles θ5, θ6 and θ7 are defined as shown. If all joint angles are zero,
then the thigh and shank are vertical, and the foot is horizontal. The joint angle is
positive if the angle of the lower link relative to the upper link is anti-clockwise.

Figure 6. Three-segment model of the exoskeleton leg.
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At each joint, there will be a torque acting between the two links. The torque T5

acts between the torso and the thigh, the torque T6 acts between the thigh and the
shank, and the torque T7 acts between the shank and the foot. The sign convention
is such that a positive torque Ti will cause a positive acceleration θ̈i .

The masses of the thigh, shank and foot links are mt, ms and mf, respectively. The
moments of inertias of the links about their centres of gravity are It, Is and If.

3.2. Ideal equations of motion

The derivation of the equations of motion for the simplified model of the exo-
skeleton leg is discussed in Ref. [15]. It is assumed that the only forces acting on the
links are the joint torques, T5, T6 and T7, and gravitational forces. Then expressions
can be found for T5, T6 and T7 in terms of the joint angles, (θ5, θ6, θ7), the joint
velocities, (θ̇5, θ̇6, θ̇7), the joint accelerations, (θ̈5, θ̈6, θ̈7), and the constant geome-
try and mass parameters of the three links, (Lt, Ls, LGt, hGt, LGs, hGs, LGf, hGf, mt,

ms, mf, It, Is, If).
The lengths of the thigh and shank links, Lt and Ls, may be determined by direct

measurement of the distances between the centers of the joints, so these parameters
are known.

The form of the equations in Ref. [15] are unsuitable for use in system identifi-
cation, as it can be shown that the parameters appearing in those equations cannot
be determined experimentally. The equations will be rewritten here in terms of the
following nine new parameters:

X7 = −mfhGf, (14)

Y7 = mfLGf, (15)

X6 = ms(Ls − LGs) + mfLs, (16)

Y6 = mshGs, (17)

X5 = mt(Lt − LGt) + msLt + mfLt, (18)

Y5 = mthGt, (19)

J7 = If + mf(h
2
Gf

+ L2
Gf

), (20)

J6 = J7 + Is + ms
(
(Ls − LGs)

2 + h2
Gs

) + mfL
2
s , (21)

J5 = J6 + It + mt
(
(Lt − LGt)

2 + h2
Gt

) + msL
2
t + mfL

2
t . (22)

Then the dynamic equations for the leg in swing mode can be rewritten in terms
of these nine new parameters. The torque equation for the ankle joint is:

T7 = [
J7 + Ls(X7 cos θ7 − Y7 sin θ7) + Lt(X7 cos θ67 − Y7 sin θ67)

]
θ̈5

+ [
J7 + Ls(X7 cos θ7 − Y7 sin θ7)

]
θ̈6 + [J7]θ̈7

+ Lt(X7 sin θ67 + Y7 cos θ67) θ̇2
5

+ Ls(X7 sin θ7 + Y7 cos θ7) θ̇2
56

+ g(X7 sin θ567 + Y7 cos θ567). (23)
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Note that θ56 denotes θ5 + θ6, θ67 denotes θ6 + θ7 and θ567 denotes θ5 + θ6 + θ7.
Similarly, θ̇56 denotes θ̇5 + θ̇6 and so on.

The torque equation for the knee joint is:

T6 = [
J6 + 2Ls(X7 cos θ7 − Y7 sin θ7) + Lt(X7 cos θ67 − Y7 sin θ67)

+ Lt(X6 cos θ6 − Y6 sin θ6)
]
θ̈5

+ [
J6 + 2Ls(X7 cos θ7 − Y7 sin θ7)

]
θ̈6

+ [
J7 + Ls(X7 cos θ7 − Y7 sin θ7)

]
θ̈7

+ Lt(X6 sin θ6 + Y6 cos θ6) θ̇2
5

+ Lt(X7 sin θ67 + Y7 cos θ67) θ̇2
5

+ Ls(X7 sin θ7 + Y7 cos θ7)
(
θ̇2

56 − θ̇2
567

)
+ g(X6 sin θ56 + Y6 cos θ56 + X7 sin θ567 + Y7 cos θ567). (24)

Finally, the torque equation for the hip joint is:

T5 = [
J5 + 2Ls(X7 cos θ7 − Y7 sin θ7) + 2Lt(X7 cos θ67 − Y7 sin θ67)

+ 2Lt(X6 cos θ6 − Y6 sin θ6)
]
θ̈5

+ [
J6 + 2Ls(X7 cos θ7 − Y7 sin θ7) + Lt(X7 cos θ67 − Y7 sin θ67)

+ Lt(X6 cos θ6 − Y6 sin θ6)
]
θ̈6

+ [
J7 + Ls(X7 cos θ7 − Y7 sin θ7) + Lt(X7 cos θ67 − Y7 sin θ67)

]
θ̈7

+ Lt(X6 sin θ6 + Y6 cos θ6)
(
θ̇2

5 − θ̇2
56

)

+ Lt(X7 sin θ67 + Y7 cos θ67)
(
θ̇2

5 − θ̇2
567

)

+ Ls(X7 sin θ7 + Y7 cos θ7)
(
θ̇2

56 − θ̇2
567

)
+ g(X5 sin θ5 + Y5 cos θ5 + X6 sin θ56 + Y6 cos θ56 + X7 sin θ567

+ Y7 cos θ567). (25)

It can be shown that these nine parameters, X7, Y7, X6, Y6, X5, Y5, J7, J6 and J5,
are independent and can therefore be identified via experiment. They are a minimal
set of parameters which fully describe the dynamics of the system.

Note that these equations apply to the case where the torso is stationary, which
is the case for all experiments described in this report. However, if the dynamic
equations are re-derived for the case when the torso is in motion, they can also be
expressed in terms of only this reduced set of nine parameters. Therefore, it is still
sufficient to identify only these parameters.

3.3. Friction, stiffness and damping

Let Ai denote the torque exerted on the joint by the hydraulic actuator. An accurate
estimate of this torque can be obtained from the force sensor measurement and the
joint angle encoder measurement (the joint angle is required to calculate the moment
arm of the actuator force about the joint).
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There are several other torques acting on the joint. We divide these into three
components: a stiffness torque, a damping and kinetic friction torque, and a static
friction torque. The stiffness torque, which we denote by Bi , is expected to be a
function only of the joint angle, i.e., Bi = bi(θi). The damping and kinetic friction
torque, which we denote by Ci , is expected to be a function only of the joint angular
velocity, i.e., Ci = ci(θ̇i). This torque Ci is zero when θ̇i is zero. Finally, the static
friction torque is denoted by Di .

The total torque exerted on the joint is then given by:

Ti = Ai + Bi + Ci + Di. (26)

3.4. Parameters for identification

In order to have an accurate model of the relationship between the actuator torques
and the motion of the exoskeleton, all terms in the equations above must be
characterized.

The following parameters are known:

• Link lengths, Lt, Ls.

• Gravitational constant, g.

The terms which need to be identified are:

• Mass moment parameters, X7, Y7, X6, Y6, X5, Y5.

• Inertial parameters, J7, J6, J5.

• Stiffness torques, B7, B6, B5.

• Damping and kinetic friction torques, C7, C6, C5.

The static friction torques, D7, D6, D5, will not be characterised, for reasons
described later.

4. PARAMETER IDENTIFICATION

4.1. Least-squares estimation

Least-squares estimation can be used to identify parameters in systems when we
have a linear relationship between the unknown parameters with coefficients which
are known functions of measurable quantities [16–20]. For example, suppose we
have a system governed by:

y(t) = [h(t)]Tx. (27)

Here, x is a vector of n constant unknown parameters, y(t) is the output of the
system at time t , and the n coefficients in the vector h(t) are time-varying and
depend upon the state of the system. However, we can determine h(t) from
measurable quantities.
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To estimate the unknown parameters, we take measurements y(ti) of the system
output at m different times or configurations. At each of these times or configura-
tions, we calculate the coefficients vector, h(ti). Additionally, some noise v(ti) is
introduced into each measurement, so that y(ti) = [h(ti)]Tx + v(ti). Then, we can
write these m equations in matrix form:

y = Hx + v, (28)

where:

y =




y(t1)

y(t2)
...

y(tm)


 , v =




v(t1)

v(t2)
...

v(tm)


 , H =




[h(t1)]T

[h(t2)]T

...

[h(tm)]T


 . (29)

Then we can find a least-squares estimate x̂ using:

x̂ = (
H TH

)−1
H Ty. (30)

4.2. Experimental procedure

In this section, the experimental procedures followed in collecting data for the
parameter identification process are outlined.

4.2.1. Static experiments. The static experiments are those in which the joint
torques are measured when the exoskeleton is in a static configuration, so all
joint velocities and accelerations are zero. For each experiment, the exoskeleton
is placed on a jig so that the torso is held in the air at a fixed position and
in vertical orientation. A sequence of configurations is programmed into the
exoskeleton controller. Each configuration consists of a list of six joint angles,
(θ5L, θ6L, θ7L, θ5R, θ6R, θ7R). When the controller is activated, the six actuators are
each commanded to move the joint to the desired angle, θd.

The voltage sent to the actuators, u, is determined by a simple proportional
controller, u = −KP (θ − θd), where θ is the joint angle measured by the encoder.
After the joints have stopped moving, the data from each of the force sensors are
collected. The joint angles measured by the encoders are also recorded. From these
values, the torque exerted by the actuator at each of the six joints is calculated and
recorded.

4.2.2. Dynamic experiments. In the dynamic experiments, the joint torques are
measured when the exoskeleton is in motion. A trajectory of the robot configuration
is programmed into the exoskeleton controller. The trajectory consists of a list of
six joint angle trajectories, (θ5L(t), θ6L(t), θ7L(t), θ5R(t), θ6R(t), θ7R(t)). When the
controller is activated, the six actuators are each commanded to track the desired
trajectory, θd(t). As in the static experiments, a simple proportional controller is
used to determine the voltage sent to the actuators.
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The joint encoder and force sensor readings are recorded at a rate of fs ≈ 50 Hz.
At each sample point, the torque exerted by the actuator at each of the six joints is
calculated from the joint encoder and force sensor readings and recorded.

After the experiment, the joint velocities and accelerations at each of the sample
points (excepting the first and last) are estimated by finite difference approxima-
tions.

4.3. Static friction torques

When a robot leg is moved to a static configuration, (θ5, θ6, θ7), the actuator torque
for each joint depends on the direction from which the joint angle was reached. This
phenomenon can be observed in the plot shown in Fig. 7. The hip and knee angles
were held constant throughout this experiment. The ankle was moved cyclically
through the angles {−15◦, 0◦, 15◦, 0◦}. On the actuator torque plot, the circles
represent the torques A+

7 where the angle position, 0◦, was approached from the
negative and the crosses represent the torques A−

7 where the angle position was
approached from the positive. It can be seen that the torques A+

7 are consistently
greater than the torques A−

7 .
The discrepancy between A+

i and A−
i is due to the static friction torque, Di . When

the joint is moving with positive velocity (θi increasing), there is a negative kinetic
friction torque to oppose the motion. When the joint comes to rest, there remains a
negative static friction torque. If the joint comes to rest from the other direction, the
static friction torque will be positive.

Figure 7. Effect of the static friction torque in the ankle.
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When the robot is walking, no joint will be completely static. Therefore, the
controller does not need to be able to estimate the static friction torque, so there
is no reason to characterize it. However, in order to obtain accurate results in the
estimation of the other parameters, it is desirable to reduce the effects of the static
friction torques. This can be achieved by taking each static torque measurement
twice, first approaching the the joint angle θi from the negative direction, then
approaching it from the positive direction. The two torques obtained, A+

i and A−
i ,

are then averaged to obtain an estimate of what the actuator torque would be if there
were no static friction torque.

4.4. Stiffness torques

When the robot is static (θ̇5 = θ̇6 = θ̇7 = 0 and θ̈5 = θ̈6 = θ̈7 = 0), the ankle joint
torque given by (23) becomes:

T7 = g
(
X7 sin θ567 + Y7 cos θ567

)
. (31)

Also, under static conditions, the damping and kinetic friction torque, C7, is zero.
We eliminate the static friction torque, D7, by averaging two measurements as
discussed in the previous section. Therefore, from (26), when the robot is static,
the measured torque is:

A7 = g
(
X7 sin θ567 + Y7 cos θ567

) − B7. (32)

To identify the ankle stiffness torque, B7, the robot was controlled to move to a
series of positions such that θ567 was the same at each of the positions, while θ5, θ6

and θ7 were all varied. Then the term (X7 sin θ567 + Y7 cos θ567) is constant for the
set of positions, so the measured torque is:

A7 = −B7 + g
(
X7 sin θ567 + Y7 cos θ567

)
, (33)

where g(X7 sin θ567 + Y7 cos θ567) is a constant.
The measured torque, A7, was plotted against the ankle joint angle, θ7. The

experiment was repeated for several different values of θ567. The different data sets
were found to have the same shape, as shown in Fig. 8, supporting the assumption
that B7 is a function only of θ7, so we can write B7 = b7(θ7).

It was found that a quadratic function, b27θ
2
7 + b17θ7 + c, fit the resulting plots

very closely. The parameters b27 and b17 were determined using a least squares fit.
Then our characterization of the stiffness function is:

b7(θ7) = b27θ
2
7 + b17θ7 + b07. (34)

However, the parameter b07 could not be determined from the previous data alone,
since the constants g(X7 sin θ567 +Y7 cos θ567) for each value of θ567 were unknown.

In order to find the parameter b07, the robot was controlled to two positions,
(θ5, θ6, θ7) and (θ ′

5, θ
′
6, θ

′
7), such that θ ′

5 + θ ′
6 = θ5 + θ6 + 180◦ and θ ′

7 = θ7. The
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Figure 8. Effects of the stiffness torque in the ankle for various values of θ567.

measured torques are:

A7 = −b7(θ7) + g
(
X7 sin θ567 + Y7 cos θ567

)
, (35)

A′
7 = −b7(θ

′
7) + g

(
X7 sin θ ′

567 + Y7 cos θ ′
567

)
. (36)

Since θ ′
567 = θ567 + 180◦, it can be shown that:

b7(θ7) = −A7 + A′
7

2
. (37)

Therefore, from these two torque measurements, and using our previously deter-
mined values of b27 and b17, we obtain an estimate of b07:

b07 = −A7 + A′
7

2
− b27θ

2
7 − b17θ7. (38)

By taking a large number of pairs of torque measurements of this kind and averaging
the resulting values of b07, we can determine b07.

The procedure for identifying the stiffness torque in the knee joint is very similar.
As for the ankle, we find that the knee actuator torques are dependent only on the
knee joint angle, so B6 = b6(θ6). Our characterization of the stiffness function is:

b6(θ6) = b26θ
2
6 + b16θ6 + b06, (39)

and the three parameters b26, b16 and b06 are identified.
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Finding the stiffness torque in the hip joints is much more difficult than finding
the stiffness torques in the knee and ankle joints. In principle, a method similar
to those used for the knee and ankle joints could be used, but this would require
experiments with the exoskeleton torso mounted in many different orientations,
so that the hip joint angle would change while the gravitational torque on the hip
remained constant.

There is no reason that the magnitude of the stiffness torque in the hip joints
should be greater (or smaller) than that in the knee and ankle joints. However, the
total torque in the hip joint is in general significantly greater in magnitude than that
in the knee and ankle joints. Therefore, the relative impact of the stiffness torque on
the total torque is much less significant in the hip joint than in the other joints.

For these reasons, the stiffness torque in the hip joints was not identified. The best
estimate without experimental data is B5 = 0.

4.5. Mass moment parameters

Equation (32) is the ankle torque equation under static conditions. Substituting in
(34) for the ankle stiffness torque and rearranging yields:

g(X7 sin θ567 + Y7 cos θ567) = A7 + (b27θ
2
7 + b17θ7 + b07). (40)

The robot is controlled to move to a series of 100 static configurations, and the
joint angles and the ankle joint torque are measured at each one. Then, for each
configuration, the right-hand side of (40), A7 + b27θ

2
7 + b17θ7 + b07, is known,

because the parameters b27, b17 and b07 have been identified. Additionally, on the
left-hand side, the gravitational constant g is known, and the values sin θ567 and
cos θ567 can be calculated. Therefore, we can use a least-squares fitting to estimate
X7 and Y7 from these measurements.

We can find the knee and hip mass moment parameters in an identical manner.

4.6. Inertia parameters

4.6.1. Foot inertia parameter. When the ankle and hip joints are stationary
(θ̈5 = θ̈7 = 0, θ̇5 = θ̇7 = 0), then the torque equation for the ankle joint is:

T7 = [
J7 + Ls(X7 cos θ7 − Y7 sin θ7)

]
θ̈6 + Ls(X7 sin θ7 + Y7 cos θ7) θ̇2

6

+ g(X7 sin θ567 + Y7 cos θ567). (41)

Neglecting the friction torque, D7, which is small compared to the total dynamic
ankle torque, the left-hand side of this equation is equal to A7 + B7 + C7. We know
C7 = 0, since θ̇7 = 0. Therefore, we have:
[
J7 + Ls(X7 cos θ7 − Y7 sin θ7)

]
θ̈6

= A7 + B7 − Ls(X7 sin θ7 + Y7 cos θ7) θ̇2
6 − g(X7 sin θ567 + Y7 cos θ567), (42)
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Figure 9. The inertial component of the ankle joint torque.

where the right-hand side of the equation is known, since X7 and Y7 have been
identified. The only unknown is the foot inertia parameter, J7. The coefficient of θ̈6

is a constant, since the ankle joint angle θ7 is fixed.
To identify the parameter J7, the hip and ankle joints were controlled to fixed

positions, while the knee joint was controlled to track a sinusoidal input of fixed
frequency. The joint angles and ankle joint torque were recorded. This was repeated
for five different frequencies (0.2, 0.4, 0.6, 0.8 and 1.0 Hz).

A least-squares fitting was then used to estimate the value of [J7 +Ls(X7 cos θ7 −
Y7 sin θ7)] from this data. Finally, the known values of Ls, X7 and Y7, along with
the constant value of θ7 for the experiments, were used to obtain an estimate of the
foot inertia parameter, J7.

A plot of the fit for one of the experiments is shown in Fig. 9. The solid line shows
the right-hand side of (42) calculated from the torque and joint angle measurements.
The dotted line shows the left-hand side of (42) calculated using the the value of
J7 obtained from the least-squares fitting. The plots matched well for all of the
experiments, verifying the form of the equation.

4.6.2. Shank inertia parameter. When the ankle and knee joints are stationary
(θ̈6 = θ̈7 = 0, θ̇6 = θ̇7 = 0), neglecting the friction torque, D6, we have:

[
J6 + 2Ls(X7 cos θ7 − Y7 sin θ7) + Lt(X7 cos θ67 − Y7 sin θ67)

+ Lt(X6 cos θ6 − Y6 sin θ6)
]
θ̈5
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= A6 + B6 − Lt(X6 sin θ6 + Y6 cos θ6) θ̇2
5 − Lt(X7 sin θ67 + Y7 cos θ67) θ̇2

5

− g(X6 sin θ56 + Y6 cos θ56 + X7 sin θ567 + Y7 cos θ567), (43)

where the right-hand side of the equation is known, since X7, Y7, X6 and Y6

have been identified. The only unknown is the shank inertia parameter, J6. The
coefficient of θ̈5 is a constant, since the knee and ankle joint angles θ6 and θ7 are
fixed.

To identify the parameter J6, the knee and ankle joints were controlled to fixed
positions, while the hip joint was controlled to track a sinusoidal input of fixed
frequency. The joint angles and ankle joint torque were recorded. This was repeated
for five different frequencies (0.2, 0.4, 0.6, 0.8 and 1.0 Hz).

A least-squares fitting was then used to estimate the value of:
[
J6 + 2Ls(X7 cos θ7 − Y7 sin θ7) + Lt(X7 cos θ67 − Y7 sin θ67)

+ Lt(X6 cos θ6 − Y6 sin θ6)
]
,

from this data. Finally, the known values of Ls, Lt, X7, Y7, X6 and Y6, along with
the constant values of θ6 and θ7 for the experiments, were used to obtain an estimate
of the shank inertia parameter, J6.

The results were verified by plotting the right-hand side of (43) calculated from the
torque and joint angle measurements against the left-hand side calculated using the
the value of J6 obtained. Again, the plots matched well for all of the experiments,
verifying the form of the equation.

4.6.3. Thigh inertia parameter. When the ankle and knee joints are stationary
(θ̈6 = θ̈7 = 0, θ̇6 = θ̇7 = 0), neglecting both the friction torque, D5, and the
damping and kinetic friction torque C5, we have:

[
J5 + 2Ls(X7 cos θ7 − Y7 sin θ7) + 2Lt(X7 cos θ67 − Y7 sin θ67) + 2Lt(X6 cos θ6

− Y6 sin θ6)
]
θ̈5

= A5 − g(X5 sin θ5 + Y5 cos θ5 + X6 sin θ56 + Y6 cos θ56 + X7 sin θ567

+ Y7 cos θ567), (44)

where the right-hand side of the equation is known, since X7, Y7, X6, Y6, X5 and
Y5 have been identified. The only unknown is the thigh inertia parameter, J5. The
coefficient of θ̈5 is a constant, since the joint angles θ6 and θ7 are fixed.

To identify the parameter J5, the ankle and knee joints were controlled to fixed
positions, while the hip joint was controlled to track a sinusoidal input of fixed
frequency. The joint angles and hip joint torque were recorded. This was repeated
for five different frequencies (0.2, 0.4, 0.6, 0.8 and 1.0 Hz).

A least-squares fitting was then used to estimate the value of:
[
J5 + 2Ls(X7 cos θ7 − Y7 sin θ7) + 2Lt(X7 cos θ67 − Y7 sin θ67)

+ 2Lt(X6 cos θ6 − Y6 sin θ6)
]
,
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from this data. Finally, the known values of Ls, Lt, X7, Y7, X6 and Y6, along with
the constant values of θ6 and θ7 for the experiments, were used to obtain an estimate
of the thigh inertia parameter, J5.

The results were verified by plotting the right-hand side of (44) calculated from the
torque and joint angle measurements against the left-hand side calculated using the
the value of J6 obtained. Again, the plots matched well for all of the experiments,
verifying the form of the equation.

4.7. Damping and kinetic friction torques

When the hip and knee joints are stationary (θ̈5 = θ̈6 = 0, θ̇5 = θ̇6 = 0), then the
torque equation for the ankle joint is:

T7 = [J7]θ̈7 + g(X7 sin θ567 + Y7 cos θ567). (45)

If the ankle joint is in motion, then the static friction torque, D7, is zero. Then the
left-hand side of this equation is equal to A7 + B7 + C7. The actuator torque A7 is
measured and the stiffness torque B7 can be calculated from the joint angle using
the stiffness function b7(θ7) found in Section 4.4. Therefore, the right-hand side of
the equation:

C7 = [J7]θ̈7 + g(X7 sin θ567 + Y7 cos θ567) − A7 − B7, (46)

is known. The damping and kinetic friction torque, C7, is expected to be a function
of the joint angular velocity, C7 = c7(θ̇7).

To find the damping and kinetic friction function, c7(θ̇7), the hip and knee joints
were controlled to fixed positions, while the ankle joint was controlled to track a
sinusoidal input of fixed frequency. The joint angles and ankle joint torque were
recorded. This was repeated for five different frequencies (0.2, 0.4, 0.6, 0.8 and
1.0 Hz).

The damping and kinetic friction torque, C7, was calculated from (46). A plot
of C7 against the joint angular velocity, θ̇7, for one of the experiments is shown in
Fig. 10.

It can be seen that the torque C7 is approximately proportional to sgn θ̇7. The same
result was found in all experiments. This shows that there is very little damping
torque, which would be approximately proportional to θ̇7. There is only a kinetic
friction torque, of the form:

c7(θ̇7) = c07 sgn θ̇7. (47)

The constant of proportionality, c07, was found using a least-squares fitting to
the data from several different frequencies (data points with θ̇7 close to 0 were
discarded, due to the discontinuity in sgn θ̇7).

The procedure for identifying the damping and kinetic friction torque in the knee
joint is very similar. As for the ankle, we find that there is very little damping torque,
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Figure 10. The ankle damping and kinetic friction torque, C7.

but only a kinetic friction torque of the form:

c6(θ̇6) = c06 sgn θ̇6, (48)

and the constant of proportionality, c06, is identified.
However, the damping and kinetic friction torque in the hip joint was unable to be

identified using the same method as was used to determine those in the ankle and
knee joints, due to the larger errors in the identification of X5, Y5 and J5.

It would be expected that the kinetic friction torques in the hip are the same order
of magnitude as those in the knee and ankle joints. Since the total torque in the hip
joint is in general significantly greater in magnitude than that in the knee and ankle
joints, the relative impact of the kinetic friction torque on the total torque is much
less significant in the hip joint than in the other joints.

For these reasons, the damping and kinetic friction torque in the hip joints was not
identified. The best estimate without experimental data is C5 = 0.

5. ANALYSIS OF RESULTS

5.1. Summary of numerical results

The numerical results of the identification experiments are presented in Tables
1–4. As discussed, the stiffness torques and the damping and kinetic friction torques
in the hip joints were not identified. The best estimate of these torques without
experimental data are B5 = 0 and C5 = 0.
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Table 1.
Stiffness torques

Left leg

B7 = (0.3129 N m/rad2) θ2
7 + (0.1557 N m/rad) θ7 + (−0.5829 N m)

B6 = (0.6263 N m/rad2) θ2
6 + (1.9334 N m/rad) θ6 + (0.5 N m)

Right leg
B7 = (−1.5341 N m/rad2) θ2

7 + (2.1484 N m/rad) θ7 + (4.5771 N m)

B6 = (1.2573 N m/rad2) θ2
6 + (2.2442 N m/rad) θ6 + (−1.0 N m)

Table 2.
Mass moment parameters (kg m)

Left leg Right leg

X7 = 0.2552 X7 = 0.2554
Y7 = 0.1313 Y7 = 0.1279
X6 = 1.9628 X6 = 1.9532
Y6 = 0.0031 Y6 = −0.0386
X5 = 3.9819 X5 = 4.0474
Y5 = −0.4083 Y5 = −0.4990

Table 3.
Inertia parameters (kg m2)

Left leg Right leg

J7 = 0.04528 J7 = 0.05243
J6 = 0.7833 J6 = 0.7897
J5 = 2.380 J5 = 2.598

Table 4.
Kinetic friction torques

Left leg Right leg

C7 = −(0.2646 N m) sgn θ̇7 C7 = −(0.3370 N m) sgn θ̇7
C6 = −(0.5291 N m) sgn θ̇6 C6 = −(0.4081 N m) sgn θ̇6

Table 5.
SolidWorks parameters

X7 = 0.2793 kg m X6 = 2.055 kg m X5 = 3.783 kg m
Y7 = 0.1546 kg m Y6 = 0.05778 kg m Y5 = −0.1601 kg m
J7 = 0.05628 kg m2 J6 = 0.8939 kg m2 J5 = 2.497 kg m2
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The mass moment parameters and inertia parameters can be compared to the
values calculated by SolidWorks from the design models of the parts. The values
are the same for the left and right legs, since the designs are identical. These are
shown in Table 5.

5.2. Comparison of models

In order to evaluate the accuracy of the system model obtained from the system
identification results, the exoskeleton was controlled to move each of its joints in
a sinusoidal trajectory. The six actuator torques, Ai , were both measured via the
force sensors, and estimated from the identified parameters and functions identified
experimentally.

The estimates of the actuator torques calculated from the system identification
results were compared to the actual measured actuator torques. One set of results is
shown in the dark black lines of Fig. 11. It can be seen that the calculated actuator
torques closely match the measured actuator torques. Therefore, the results of the
system identification provide a good model of the dynamics.

The light grey lines in Fig. 11 show the estimates of the actuator torques calculated
from the model based on the SolidWorks designs of the exoskeleton. It can be seen
that, in general, this model is significantly less accurate than the results using the
system identification based model.

6. CONCLUSIONS

In order to achieve a compliant control system for BLEEX, a very accurate model
of the system dynamics is required. A series of system identification experiments
was designed and carried out for BLEEX.

In order to fully characterize the relationship between the motion of the exo-
skeleton leg and the torques exerted by the hydraulic actuators, it is necessary to
identify:

• Mass moment parameters, X7, Y7, X6, Y6, X5, Y5.

• Inertial parameters, J7, J6, J5.

• Stiffness torques, B7, B6, B5.

• Damping and kinetic friction torques, C7, C6, C5.

Each of these terms was isolated individually in the equations of motion, and
experiments were designed and performed to identify each of them in turn. Only the
stiffness, damping and kinetic friction torques in the hip were not found, and these
were judged to have a relatively small impact on the motion of the exoskeleton.

The results of the identification process produced an accurate model of the
dynamics of the exoskeleton legs. This model was compared to the simplistic model
predicted from the robot designs and was found to be much more accurate.
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Figure 11. Comparison of calculated actuator torques to measured actuator torques in a dynamic
experiment.
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