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ABSTRACT

This paper presents a theoretical and experimental investigation of a new
kind of force sensor which detects forces by measuring an induced pressure
change in a material of large Poisson's ratio. In this investigation we develop
mathematical expressions for the sensor's sensitivity and bandwidth, and show
that its sensitivity can be much larger and its bandwidth is usually smaller than
those of existing strain-gage-type sensors. This force sensor is well-suited for
measuring large but slowly varying forces. It can be installed in a space smaller
than that required by existing sensors.

ARCHITECTURE

The objective is to design and construct a prototype hydrostatic force
sensor to measure the compression and tension forces in one direction. Figure 1
shows a schematic of the sensor configuration. It consists of two components
(part A'and part B) that behave like a piston and a cylinder. The pressure in the
fluid trapped between A and B is measured by a pressure transducer. A standard
face seal prevents fluid leakage. Because this force sensor must measure both
compression and tension, it is necessary to clamp part A and part B together with
screws. The clamping force which we call pre-load, fj, is applied by tightening
the screws. The more the screws are tightened, the greater pre-load force that
can be generated in the fluid. The force to be measured is f. If load f is a tension
force, the fluid pressure decreases from the initial pre-load value. If load f is a
compression force, the fluid pressure increases.

DESIGN CONSTRAINTS

Because the force sensor must measure both compression and tension, it
is necessary to clamp part A and part B together with screws. The clamping
force which we call pre-load fj is applied by tightening the screws. If load f is a
tension force, the screw force increases and the fluid pressure decreases. If load
f is a compression force, the screw force decreases and the fluid pressure
increases. The screws and the fluid chamber act like two springs in parallel. The
stress in the screws and the pressure in the fluid can be calculated from equations
1and 2.
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Kf and K are effective stiffness of the fluid and the screws and can be calculated
from equations 3 and 4.

_ BAf

Kf = 1 ; \~s
n E il

Ks= LP858 | @

As, Es, Ls and n are the area, Young modulus, effective length and quantity of
the screws, respectively. B, Af, and h are the bulk modulus, fluid surface area,
and fluid height, respectively. It can be observed from equations 1 and 2 that
when f =0 (i.e., there is no force on the force sensor), the forces in the fluid and
the screws are both equal to fi. When force f is applied as a tension force (as

shown in Figure 2), the stress in the screw, G5, increases while the pressure in the
fluid decreases. If f is a tension force, there are two limiting situations that cause
failure in the system:

Case 1: The stress in the screw, O , reaches the material yield stress.

Case 2: The pressure in the fluid, p, decreases to zero.

If f is a compression force, two other limiting situations can cause failure in the
system:

Case 3: The pressure in the fluid, p, reaches the maximum measurable
pressure of the pressure transducer or the maximum allowable
pressure of the seal.

Case 4: The screw compression stress reaches its maximum compression
yield stress.

f

Figure 1: The pressure increase in a high Poisson ratio material is a direct
result of applied force. Ifload fis a tension force, the fluid pressure decreases
from the initial pre-load value. If logd fis a compression force, the fluid
pressure increases.

The designers must assure that the four limiting situations above never occur
during normal system operation. Next we explain how to guarantee that these
four cases do not occur.



[Cases 1 and2: ]

To guarantee that case 1 for a tension force (i.e., failure of the screw
material) does not occur, the designer must ensure that the screw stress, Os,
remains below the maximum allowable screw stress, Oall, when fmax is imposed
on the system. This is shown in inequality 5, where it can be observed that

choosing a small pre-load, fj, helps the designers keep o5 smaller than 631 On
the other hand, to guarantee that case 2 does not occur (i.e., the fluid pressure
becomes zero), fj should be chosen to be large enough to satisfy inequality 6.
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Solving for fj from inequalities 5 and 6 results in an upper bound and a lower
bound for the pre-load force, fj.

Kf K
(K+Kp ) fmax <fi<n call As - (g—*g=) fmax ™

Inequality 7 is a design constraint which is necessary to prevent force sensor
failure in the presence of the maximum tension force, fmax.

(Cases 3 and 4: ]

To guarantee that case 3 for a compression force (i.e., excessive fluid
pressure) does not occur, the designer must ensure that the fluid pressure, p, does
not reach the maximum allowable pressure of the pressure transducer, Op, when
fmin is imposed on the system2. (Note that fyip is a negative quantity; for the
prototype force sensor fmin = -7,200 1b.) As seen in inequality 8, this can be
ensured by choosing a small pre-load, fj. On the other hand, to guarantee that
case 4 (i.e., failure of the screw material under compression) does not occur, the
preload force, fj, must be chosen to be a large quantity, as seen in inequality 9.
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Solving for fj from inequalities 8 and 9 results in an upper bound and a lower
bound for the pre-load, fj during compression.
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Inequalities 7 and 10 must be satisfied. to prevent sensor failure.

DESIGN PARAMETERS:

Two properties of this sensor, sensitivity and bandwidth, are its major
parameters. The "sensitivity"” of a sensor tells us the quality of the signal (i.e., its
resolution in volt/Ibf). The "bandwidth" of a sensor tells us the range of force
signal speeds that this force sensor can measure. Force sensors can record only
the frequency components of the applied forces which fall within the sensor's
bandwidth. If the bandwidth of the sensor is not wide in comparison with the
bandwidth of the rest of the system (e.g., robot, actuation, etc.), either the force

2 op must be chosen to be the smallest of the maximum measurable pressure of
the pressure transducer or the maximum allowable pressure of the seal.



sensor dynamics must be modeled for controller design, or a lower bandwidth for
overall control system should be considered.

The pressure in the fluid can be calculated via equation 6 and it is re-

written here in a more appropriate form.
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Since the voltage from of the pressure transducer, v, is proportional to the
pressure increase, equation 12 applies.
v=S8p p 12)
Sp is the pressure transducer sensitivity. Substituting equation 11 into 12 results
in the output voltage as a function of the applied force.
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The force sensor sensitivity therefore equals:
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Designers always wish to have a large sensitivity in the sensor: a large
sensitivity in the force sensor results in a large voltage for a given applied force.
The parameters of equation 14 can be chosen to yield a particular sensitivity. On
the other hand, the designer should be aware of the role of the design parameters
on another important sensor property: bandwidth. The overall bandwidth of a
robotic system is limited by high-frequency unmodeled dynamics (e. g., structural
resonances for bending and torsion, sensor dynamics, actuator dynamics). To
achieve a wide bandwidth for the closed-loop system, it is necessary to consider
high order dynamics in modeling the system. Adding high order dynamics to the
system results in a wider bandwidth for the system at the expense of a high order
compensator. If higher order dynamics cannot be determined, it is necessary to
compromise on the overall system bandwidth. It is usually recommended to
"push” the high frequency unmodeled dynamics by designing "stiff" components.
In other words, a robot's components must be designed to have large natural
frequencies. The natural frequency or bandwidth of a sensor can be calculated
from equation 15.
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K{ is the stiffness of the sensor and m is some effective mass that depends on the
rest of the robot inertia. It is rather impractical to arrive at the natural frequency
of the force sensor without any regard for the inertia of the other components.
We leave equation 15 without further development, since m is a function of robot
inertia. However, we must consider that the larger the stiffness of the sensor, the
larger the natural frequency is. The total stiffness of the pressure transducer can
be derived from equation 16.
Kt= Kg+Kf (16)
To achieve a large stiffness, both Kg and Kf must be large. From
equation 14 it can be observed that a large sensitivity requires a small Af, but
equation 3 shows that a small Af results in a low fluid stiffness. One method of
dealing with this tradeoff is to decrease h, so Kf does not get too small. Another
tradeoff is the screw stiffness: a large screw stiffness results in a large total
stiffness of the system, but this decreases the system sensitivity. Equation 16
shows that stiff screws decrease the system sensitivity. We recommend that, for
low bandwidth yet still precise operation, the designer choose a set of screws
with small stiffness. On the other hand, in wide bandwidth operations, we
recommend a large stiffness for the screws.



