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The deburring process of manufactured parts has been investigated theoretically and
experimentally as a frequency domain control problem with special regard to ap-
plication by industrial robot manipulators. A new control strategy /i!as been
developed for precision deburring to guarantee burr removal while compensating
for robot oscillations and small uncertainties in the location of the part re'iative to
the robot. Compliant tool-holders, designed according to the above control.\"trategy,
provide the required normal and tangential forces for deburring. A servo j10sition-
ing table used to holds parts, has been considered in this study to compe/lSate for
robot oscillations up to 80 percent. The robot, the compliant tool-holder, and the
servo positioning table, working together with a closed-loop process control, form a
new automated system that deburrs manufactured parts.
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Fig. 1 Typical variations in burr size

1 Introduction
The deburring of machined parts is a major area of concern

in improving manufacturing cost efficiency. Deburring costs
for some cast parts can be as high as 35 percent of the total
part cost. This is a major reason for the development of an
automated deburring operation. In most cases, burrs must be
removed to allow the proper fitting of assembled parts and to
insure safe and proper functioning. On high-temperature,
high-speed rotating parts, deburring is further required in
order to reduce turbulent gas flow, maintain dynamic balance,
and relieve localized stress. For these types of parts, the term
precision deburring is used. The final geometry of a deburred
edge must remain within a given set of tolerances. Addition-
ally, the surface produced on the edge requires a high quality
finish. Typically, manual deburring is the only deburring
method available, and represents a time-consuming and ex-
pensive solution. This paper examines the development and
implementation of an automated approach to precision de-
burring using industrial robots.

In Section 2, an approximate geometrical model of the burr
is described. This geometrical model plays a key role in
understanding the normal and tangential forces produced in
precision deburring. In Section 3, robot position uncertainties
in deburring are considered. In Section 4, we offer a new ap-
proach for robotic deburring to guarantee the required normal
and tangential forces in the presence of uncertainties in the
robot location. Section 6 describes a feedback system that
employs the robot, the compliant tool-holder (end-effector),
and the servo positioning system, working according to the
prescribed control strategy.

2 Precision Deburring Model
A geometric model of a burred work piece edge was
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generated from statistical data based on the burr ht:ight and
root thickness measurements made on aircraft engine parts
[6]. Using these data, an average burr can be modelc~d with a
height of 0.25 to 0.75 mm (0.010 to 0.030 in.), and a thickness
of 0.025 to 0.075 mm (0.001 to 0.003 in.) For the overall data,
however, the burr heights ranged from zero (a sharp corner) to
1.5 mm (0.060 in.), and the root widths from zero to 0.23 mm
(0.009 in.). A typical burr, therefore, is highly variable.

The burr removal tools chosen for this research were
tungsten cemented carbide rotary files. This type of tool pro-
vides good overall characteristics for robotic debun-ing [14].
As such, the conic bits produce a 45 degree chamfl~r on the
workpiece edge if the tool is held orthogonal to the part sur-
face. Therefore, to insure the complete removal of a given
burr, the chamfer width must be larger than the root width. A
45 degree chamfer of 0.65 %0.13 mm (0.025 %0.005 in.) is ade-
quate to remove the worst-case burr within an acceptable
geometric tolerance as seen in Fig. 1.

The material removal rate (MRR) of a deburring pass is a
function of the velocity of the tool bit along the edge and the
cross sectional areas of both the chamfer and the b'urr. This
relationship can be expressed as:

MRR = Achamfer(Rlang + 1) VIDal (1)
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Fig. 3 A passive compliant end-effector
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3 Robot Position Uncertainties
While robots can meet the flexibility requirement for a

deburring system, the positional accuracy of existing in-
dustrial robots is generally poor. For example, the General
Electric P50 robot used in deburring tests has a limited pro-

Nomenclature

A burr = the cross-sectional area of the burr
Achamfer = the chamfer area

Cn,C, = damping factors in the normal and tangential
direction

O{;(II) = transfer function of the table
Ko = the integrator gain

Kn,Kt = stiffness of the end-effector in the normal and
tangential direction

M = grinder mass
MRR = material removal rate
Rtang = A burr/A chamfer

Vtool = tool speed along the path
X, = the commanded distance between the part and

the robot
X = the actual distance between the part and the

robot
oFn,oF, = variations in normal and tangential contact

force
oXn,oX, = end-effector deflections in the normal and

tangential direction
"'b = frequency range of the burr seen by the robot
"', = frequency range of oscillations of the robot
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Fig. 2 Cutting surface area, 45 degree conic mill

Even though each parameter in equation [1] can be a func-
tion of other parameters, such as contact forces and the stiff-
ness of the material, the MRR can always be specified with a
given set of geometrical variables: feed-rate, depth of cut and
Rtang. These variables are a function of other variables de-
pending on the control strategy used in the deburring process.
By using the burr height and thickness to model the burr area
as a triangle, the tangential area ratio (Rtang) can be approx-
imated for the burrs studied. This area ratio can vary in
process from zero for sharp corners, to 0.2 for average burrs,
and to the worst case ratio of 2.0. The MRR for a given veloc-
ity and a desired constant chamfer can vary 200 percent for
our edge model. Therefore, even under stable cutting condi-
tions, large variations are expected in the components of the
cutting force. We have not yet defined the force components.

A three dimensional geometric model of a burr, however,
which includes the full geometry of the conic bit, is more
useful for this work. It can be shown theoretically [2], [4], that
the cutting force is largely a function of the average surface
area of the cut. This resultant cutting force, then, can be
resolved with respect to both the part and the end-effector into
two vector components of interest: the tangential force (in the
direction of the tool velocity) and the normal force as seen in
Fig. 2.

The projected areas, as seen in the model, are simply
geometric functions of the intersection between the part cor-
ner, the burr, and the milling cone. Using this model, the area
ratio, or the projected burr area divided by the projected
chamfer area, will indicate the effect of burr size on the com-
ponent of the cutting force normal to that area. The tangential
area ratio, discussed previously, indicates that the worst case
variations in burr size will produce significant variations in the
tangential force. If, however, the burr and chamfer areas are
projected in the normal direction perpendicular to the edge,
the area ratio varies from zero for a sharp edge, to only 0.02
for an average burr, to the worst case value of 0.26. As such,
variations in the burr size should not greatly affect the normal
force for a given chamfer. Therefore, the normal force can be
used to produce a consistent chamfer in the presence of fairly
large burrs. These results have been verified experimentally
[2].
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Fig. 4 The required dynamic behavior of the end-effector in the normal
direction for oscillation compensation of the robot



Fig. 5 Deburring an edge

grammable resolution of 0.25 mm. Furthermore, the robot
end-point position at a programmed point is characterized by
a low frequency periodic motion with a peak-to-peak
amplitude of 0.1 to 0.2 mm. Based on total positional uncer-
tainties of about 0.35 mm, the P50 by itself, is unsuitable for
precision deburring tasks. There are also some positional
uncertainties in flXturing the part.

A common solution to this problem involves the addition of
compliant elements between the robot and the debumng tool.
Considerable work has been done using compliant deburring
end-effectors [1,2,4,14]. The device features compliance in
two orthogonal directions in the form of replaceable springs
and fluid dampers. Figure 3 shows an example of the passive
end-effector [2].

The dynamic behavior of the passive end-effector in the
direction normal to the part, can be approximated by a second
order dynamic equation as:

oFn(s) = (Ms2 + Cns + Kn)oXn(s) (2)

Where M is the grinder mass, Cn and K,; are the damping and
the spring stiffness of the end-effector in the normal direction,
respectively, and s is the Laplace operator. Figure 4 depicts
loXnU<AI)/oFn U<AI)1 for some frequency range. For all frequen-

cies 0< <AI < VK;7M, one can approximate the dynamic equa-
tion of the end-effector as loFnU<AI)I~Kn loXnU<AI)I. So, if the
position uncertainties of the robot manipulator in the normal
direction have a frequency spectrum of less than VK;7M, the
normal contact force variation will be Kn loXnU<AI)1. If Kn is
chosen to be small (large compliancy), then oFnU<AI) will be
small in the presence of a fairly large oXnU<AI). Note that
oXnU<AI) is the robot positional uncertainty (robot oscillations,
robot programming errors, flXturing errors) for which com-
pensation must take place. Compensation of robot position
uncertainties by c~nt end-effectors requires that M be
chosen such that"; Knl M> <AI" where <AI, is the frequency range
of the robot oscillations. The choice of M IS limited by the
grinder s.ize.lftheend-effectQrbandwidth(~ IS not
wider than the frequency range of the robot oscillations, then
large contact forces in the normal direction would occur due
to other terms such as Ms2 and Cns.

Two questions may be raised: I) What compliancy is needed
in the normal direction and in the tangential direction in the
debumngprocess? 2) Does the prescribed high compliancy for
compensation of robot position uncertainties conflict with the
required compliancy for the deburring process? These ques-
tions are answered in the following section.

4 A Control Strategy for Deburring

In this section, we propose a new approach for deburring
using a robot [9-11]. First, we assume there are no uncertain-
ties in the robot position. After understanding the re-
quirements for deburring by a "perfect" robot, we incor-
porate the robot uncertainties in our analysis.

Consider the deburring of a surface by a robot manipulator;
the objective is to use an end-effector to smooth the surface
down to the commanded trajectory represented by the dashed
line in. Fig. 5. It is intuitive to design an end-effector (tool-
holder) for the manipulator with a large impedance (small

compliance) in the normal direction and a small impedance
(large compliance) in the tangential direction. We define im-
pedance as the ratio of the contact force to the end-effector
deflection as a function of frequency. For example, the im-
pedance of the end-effector in the normal direction is
Msl +Cns+ Kn. A large impedance in the normal direction
cuases the end-point of the grinder to reject the interaction
forces and stay very close to the commanded trajectory
(dashed-line). The larger the impedance of the end-effector in
the normal direction, the smoother the surface will be. Given
the volume of the metal to be removed, the desired tolerance
in the normal direction prescribes an approximate value for
impedance in the normal direction. As described in Section 1,
the force necessary to cut in the tangential direction at a con-
stant traverse speed is approximately proportional to the
volume of the metal to be removed [3]. Therefore, the larger
the burrs on the surface, the slower the manipulator must
move in the tangential direction to maintain a relatively con-
stant tangential force. This is necessary because the slower
speed of the end-point along the surface implies a smaller
volume of metal to be removed per unit of time, and conse-
quently, less force in the tangential direction. To remove the
metal from the surface, the grinder should slow down in
response to contact forces with large burrs.

The above explanation demonstrates that it is necessary for
the end-effector to accommodate the interaction forces along
the tangential direction, which directly implies a small im-
pedance value in the tangential direction. If a designer does
not accommodate the interaction forces by specifying a small
stiffness value in the tangential direction, the large burrs on
the surface will produce large contact forces in the tangential
direction.

Two problems are associated with large contact forces in the
tangential directions: the cutting tool may stall (if it does not
break), a slight motion may develop in the end-point motion
in the normal direction, which might exceed the desired
tolerance. A small value for the impedance in the tangential
direction (relative to the impedance in the normal direction)
guarantees the desired contact force in the tangential direc-
tion. The frequency spectrum of the roughness of the surface
and the desired translational speed of the robot along the sur-
face determine the frequency range of operation "'bo"'b is the
frequency range of the burr seen from the end-effector. The
following equalities summarize the dynamic characteristics,
required for the deburring.

loXnU",)/oFnU"') I~ very small for all "'EcJJb

loXtU",)/oFtU",) I ~ very large for all "'E"'b

From the analysis on the compensation of the robot oscilla-
tion in Section 3, loXnU",)/oFnUcJJ) I must be large for all
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Fig. 9 The closed.loop system for compensation of robot oscillations

be robust relative to the robot oscillations, robot programm-
ing inaccuracies, and flXturing errors in all "'E"',. These ideal
impedances are plotted in Fig. 6. Recall that a passive end-
effector with the dynamic behavior given in Fig. 6 cannot be
built. Figure 7 represents an alternative dynamic behavior for
the end-effector which is achievable. The dynamic behavior
prescribes a large stiffness in the normal direction and a small
stiffness in the tangential direction. The large stiffness of the
end-effector in the normal direction causes the end-effector to
reject the contact forces and stay very close to the commanded
trajectory. The necessity of a large Kn conflicts with the re-
quirement for compensation of the robot oscillations. The
following section explains how one can compensate for robot
oscillations with a large stiffness in the normal direction.

5 Compensation of Uncertainties in Robot Position

When a large stiffness in the normal direction is chosen for
the end-effector to improve the quality of the surface finish,
then the end-effector will not be compliant enough to compen-
sate for robot oscillations. A system was developed using the
robot and the end-effector in series with a servo positioning
table. Figure 8 is a diagram of the arrangement. In this case,
the workpiece is mounted on the positioning table. The end-
effector (which holds the grinder) is mounted on the robot.
The robot moves the tool tangentially along the edge (into the
Figure) at the desired feed velocity. The objective is to control
the position of the table fast enough to compensate for robot
oscillations. In an ideal case, when the robot does not
oscillate, the table motion will be zero, and if the robot
oscillates, the table will move "appropriately" such that the
relative distance between the robot and the table is relatively
constant. The robot positions the end-effector for large scale
tracking of the workpiece edge profile, while the positioning
table, acting under a separate process control, provides the
small scale maneuvering to compensate for robot oscillations,
programming errors, and fixturing.

The closed-loop system in Fig. 9 shows the control scheme.
G(s) is the closed-loop transfer function of the table with a 10
hertz bandwidth. The input to G(s) is position command, and
the output of G(s) is the actual table position. All position
commands that contain the frequency spectrum up to 10 hertz
can be followed by the table very closely. The oscillatory robot
motion along the programmed path is simply treated as low
frequency disturbances, R. X, is the reference position com-
mand for the table. The actual distance between the robot and
the part, X, (which is polluted by robot oscillations) can be ob-
tained by measuring the spring deflection in the end-effector.
The measured signal is then fed to a compensator, K(s) ,

O<"'<"'r to compensate for the uncertainties in the robot
position. Choosing a large impedance conflicts with the re-
quired impedance to compensate for robot oscillations. The
compensation for robot position uncertainties demands a low
impedance (large compliance) in the normal direction, while a
large impedance is required for deburring purposes. If one
designs an end-effector with the dynamic characteristics
shown in Fig. 6, then both requirements can be satisfied. As
shown in Fig. 6, loXnU",)/oFnU"') I is very large for all "'t"'r
and very small for all "'t"'b' While a large loXnU",)/oFnU"') I
in (0",,'> does not let the robot oscillations develop a large
variation in the normal contact force, a small loXnU",)/
oFnU",)1 in "'b will cause the end-effector to be very stiff in
response to the burrs. The following is a summary of the
characteristics of the end-effector in the normal direction.
-loXnU",)/oFnU"') I must be large for all "'t"'r

-loXnU",)/oFnU",)1 must be small for all "'t"'b

-'" r < .J"K;;7M < '" b

Figure 6 also shows the dynamic behavior of the end-effector
in the tangential direction. For all "'t"'b' I oXt U",)/oFtU"') I is
large to guarantee the deburring requirements. Note that
loXnU",)/oFnU",) 1< < loXtU",)/oFtU"') I for all "'t"'b' It is im-

possible to design and build a passive end-effector with the
dynamic characteristics shown in Fig. 6. This is because of the
role the constant mass of the grinder plays in the dynamic
behavior of the end-effector. Since the mass of the grinder is a
constant parameter in the dynamic equations of the end-
effector in both directions, the only possible dynamic behavior
for a passive end-effector is of the form given in Fig. 7. For a
given set of Kn and Kt in both directions, one cannot choose
arbitrary natural frequencies in both directions. The natural
frequencies (or bandwidths) for a ~ve end-effector are
fixed approximately at.J"K;;7M and -J Kt/ M.

The dynamic behavior of the end-effector in both directions
at high frequencies is equal. As shown in Fig. 7, Kn and Kt are
chosen very large and very small respectively, to guarantee the
requirement for deburring. However, Kn must be small
enough such that the variation in the position of the robot
does not develop a sizable variation in the normal contact
force. This is a dilemma which is solved in Section 6 by adding
an active element into the system in a feedback fashion. We
must also add that "impedance control" [7-11] is the only
method to develop a dynamic behavior such as those given in
Fig. 6. Impedance control method which will guarantee
various stiffness will be achieved for a system for an arbitrary
(but bounded) frequency range.

In summary, we examine the design rules and the resulting
dilemma. To deburr with robots, low and high impedances are
necessary in the tangential and normal directions for all "'t"'b.
The low stiffness in the normal direction causes the system to
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Fig. 11 Step burr test setup

simulated by a micro computer. The output of the computer is
then fed to the table. The design specifications for the transfer
function of K(s) are as follows [12,13]:

1) The relative distance between the part and the robot
must remain constant for all frequency ranges of robot oscilla-
tions. In other words, XUCoJ)/ XrUCoJ) must be almost equal to
unity for all CoJECoJr. This design specification can be expressed
as:

Fig. 12 Surface finish after compensation

XU"') G(j",)K(j",)XrU"'} 1 + GU",}KU"'} = 1 for all "'E"'r

where "'r is chosen to be wider than (or equal to) the frequency
range of the oscillation of the robot. We consider a 5 hertz for
"'r'

(3)

2) All disturbances that are im posed by the robot must be
compensated. In other words XU",)/RU",) must be very close
to zero in all "'E"',. This design specification can be expressed
as:

0 2 4 6 8
Time(sec)

Fig. 13 Normal force in deburring inconel

10

XU"')R(jw) 1 + G(jw)K(jw) = 0 for all w~wr

3) The entire system must remain stable.
The transfer function of the table, G(jw) is almost equal to

unity within 10 hertz. This was verified by taking the fre-
quency response of the table. To guarantee the truth of equa-
tions (3) and (4), it is clear that G(jw)K(jw) must be very large
(actually much larger than unity) for all frequencies w~wr. If
G(jw)K(jw) is chosen to be very large, equations (3) and (4) can
be written as:

X(jw) G(jw)K(jw) .~ ~..

(4)

~

Fig. 9 is approximately at -Ko. This can be verified from the
roots of the denominator of the transfer function in equation
[3], if au",) is approximated by unity and KU",) is chosen ac-
cording to equation [7].

The digital control program was run on an IBM-PC to im-
plement the above integrator controller within a sampling time
.001 s. The amplitude of the P50 oscillations ranges from 0.1
to 0.2 mm at frequencies of 0.5 to 5 Hertz. Accordingly, the
system with an bandwidth of about 5 Hertz, is able to compen-
sate for the robot motion. The stiffness of the end-effector in
the normal direction was then chosen to be large enough to
develop a smooth surface finish. The natural frequency of the
end-effector was placed at 22 Hertz using 1.8 N/mm springs,
and filled with a 30 Pa-s oil to produce a 1.2 damping ratio.

Figure 10 demonstrates the effect of the active compensa-
tion. In the first plot, the end-effector was positioned by the
robot at a fixed normal displacement with respect to the sta-
tionary part, as in Fig. 8, with the positioning table turned
off. A strip chart recording of the end-effector signal shows a
robot disturbance amplitude of 0.085 mm (0.0034 in.) at a fre-
quency of 1.5 Hertz. In the second plot, the positioning table
was in operation. Here the peak-to-peak amplitude is reduced
to 0.014 mm (0.0006 in.) at the same 1.5 Hertz. Using the end-
effector spring stiffness of 1.8 N/mm, the low frequency
deburring force should vary only 0.034 N in process. In addi-
tion to reducing the robot path errors, the active compensa-
tion reduces the complexity of the robot programming.

= = 1 lor all WEW~ r (5)GU",)KU"')X,U"')

XU"') =- 0 for all "'f'"RU",) GU",)KU",) ,

Equations (5) and (6) show that a large loop gain,
GU",)KU"'), will guarantee the design specifications. The
transfer function of the table, GU",), is equal to unity for 10
hertz, and since there is no option on modifying GU",), then
KU",) must be chosen as a very large transfer function to
guarantee the large size of the GU",)KU",) for all "'f"',. We
choose KU",) as an integrator to guarantee the large size of the
compensator.

(6)=

KU",) = Kolj", (7)

Ko is a positive gain. By adjusting Ko, one can guarantee that
KU"') is very large for all """",. With the above configuration,
the dominant closed-loop pole of the overall system shown in
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Because the actual deburring force is maintained by the
manipulator-controller, the need for painstaking programm-
ing of a nominal force (with respect to a sharp edge) is
eliminated. Furthermore, position errors in the part dimen-
sions and fixturing are also eliminated.

Considering a servo positioning table in the experiment im-
plies the use of an active end-effector in the deburring process.
One can use an active end-effector on the robot to compensate
for positional uncertainties instead of using a servo position-
ing table to maneuver the part.

burrs in the presence of robot oscillations and bounded uncer-
tainties in the location of the robot end-point relative to the
part. To remove the burr, high and low impedances are re-
quired in the tool-holder in the normal and tangential direc-
tions, respectively, for the frequency range that burrs are seen
by the robot. To compensate for robot oscillations and posi-
tional uncertainties, a low impedance is required for the end-
effector in the normal direction for the frequency range of the
robot oscillations. The above two requirements for deburring
and oscillation compensation, establish a design rule for con-
trol strategy for deburring. A passive system cannot provide
the above two designs rules. This is because of the role the
constant mass of the grinder plays in the dynamic behavior of
the end-effector.

An actice element is added to the system to compensate for
robot oscillation so it is not necessary to have low impedance
in the normal direction. Employment of a servo positioning
table, will allow the use of a larger impedance in the normal
direction which results in smooth and regular chamfers at
higher feed-rates.
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6 Experimental Results

In order to study the transition from a sharp edge to a large
burr, and to provide a worst case deburring test, an active
compensation setup was used to deburr step burr specimens of
304 stainless steel and Inconel 718. To produce these
specimens, burrs of a given size were machined on the
specimem edges. Sections of the burr were next filed down to
create the step burrs as seen in Fig. II. During the deburring
tests, the robot provided the tool feed motion from point I to
point 2 at a programmed, tangential, velocity along the edge.
The servo positioning table produced the compensating mo-
tion in the normal direction. For the complete series of tests,
the peak-to-peak variation in the normal deburring force, in
all cases, remained at or below 0.06 N. Two actively deburred
step-burr specimens are shown in Fig. 12. For the stainless
steel specimen, two 0.61 mm step-burrs were removed by a
0.88 N normal force at a 10 mm/s velocity. This resulted in a
specimen chamfer width of 0.65 %0.05mm (or a peak to varia-
tion of % 8 percent). The uniform reflection of the light from
the deburred edge in Fig. 12 shows the smoothness of the edge.

For the Inconel specimen, the 0.65 mm burrs were removed
by a 1.2fi N force at 5 mm/s, leaving a 0.54%0.05 mm (%9
percent) Ichamfer. There was no secondary burr formation on
the surface finish. The regularity of the chamfer geometries
was improved noticeably over passively deburred specimens.
This was reflected by the low percent in variation of the
chamfer width. Lastly, the improved chamfers, particularly
for the Inconel, were produced at high speeds, typically, twice
the velocity of similar passive specimens.

Figure 13 shows the normal force. Once the grinder en-
counters the edge (point I), then the normal force increases
and remains relatively constant (1.26 Newton for Inconel)
despite of existance of two step burrs. However, the tangential
force changes with the change in the burr heights.

7 Conclusion

An a~tomated deburring procedure using a robot
manipul~tor is considered in this paper for the removal of
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