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On the Robot Compliant Motion
Control

The work presented here is a nonlinear approach for the control and stability
analysis of manipulative systems in compliant maneuvers. Stability of the environ-
ment and the manipulator taken as a whole has been investigated using unstructured
models for the dynamic behavior of the robot manipulator and the environment,
and a bound for stable manipulation has been derived. We show that for stability of
the robot, there must be some initial compliancy either in the robot or in the en-
vironment. The general stability condition has been extended to the particular case
where the environment is very rigid in comparison with the robot stiffness. A fast,
light-weight, active end-effector (a miniature robot) which can be attached to the
end-point of large commercial robots has been designed and built to verify the con-
trol method. The device is a planar, five-bar linkage which is driven by two direct
drive, brush-less DC motors. The control method makes the end-effector to behave

dynamically as a two-dimensional, Remote Center Compliance (RCC).

1 Introduction

Most assembly operations and manufacturing tasks require
mechanical interactions with the environment or with the ob-
ject being manipulated, along with ‘‘fast’’ motion in un-
constrained space. In constrained maneuvers, the interaction
force! must be accommodated rather than resisted. Two
methods have been suggested for development of compliant
motion. The first approach is aimed at controlling force and
position in a nonconflicting way {10, 11, 12, 18]. In this
method, force is commanded along those directions constrain-
ed by the environment, while position is commanded along
those directions in which the manipulator is unconstrained
and free to move. The second approach is focused on develop-
ing a relationship between the interaction force and the
manipulator position [l, 4, 5, 13]. By controlling the
manipulator position and specifying its relationship with the
interaction force, a designer can ensure that the manipulator
will be able to maneuver in a constrained space while main-
taining appropriate contact force. This paper describes an
analysis on the control and stability of the robot in constrain-
ed maneuvers when the second method is employed to control
the robot compliancy.

We start with modeling the robot and the environment with
unstructured dynamic models. To arrive at a general stability
criterion, we avoid using structured dynamic models such as
first or second order transfer functions as general representa-
tions of the dynamic behavior of the components of the robot
(such as actuators). Using unstructured models for the robot
and environment, we analyze the stability of the robot and en-
vironment via the Small Gain Theorem and Nyquist Criterion.
We show that the stability criterion achieved via the Nyquist

Vin this article, “force’ implies force and torque and ‘‘position” implies
position and orientation.
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method is a subclass of the condition given by the Small Gain
Theorem. For a particular application, one can replace the
unstructured dynamic models with known models and then a
tighter condition can be achieved. The stability criterion
reveals that there must be some initial compliancy either in the
robot or in the environment. The initial compliancy in the
robot can be obtained by a passive compliant element such as
an RCC (Remote Center Compliance) or compliancy within
the positioning feedback. Practitioners always observed that
the system of a robot and a stiff environment can always be
stabilized when a compliant element (e.g., piece of rubber or
an RCC) is installed between the robot and environment. The
stability criterion also shows that no compensator can be
found to stabilize the interaction of the ideal positioning
system (very rigid tracking robot) with an infinitely rigid en-
vironment. In this case the robot and environment both resem-
ble ideal sources of flow (defined in bond graph theory) and
they do not physically complement each other. A fast, light-
weight, active end-effector (a miniature robot) whcih can be
attached to the end-point of a commercial robot manipulator
has been designed and built to experimentally verify the con-
trol method.

2 Dynamic Model of the Robot With Positioning
Controllers

In this section, a general approach will be developed to
describe the dynamic behavior of a large class of industrial
and research robot manipulators having positioning (tracking)
controllers. The fact that most industrial manipulators already
have some kind of positioning controller is the motivation
behind our approach. Also, a number of methodologies exist
for the development of robust positioning controllers for
direct and nondirect robot manipulators [14, 17].

In general, the end-point position of a robot manipulator
that has a positioning controller is a dynamic function of its
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Fig.1 The dynamics of the manipuiator with the positioning controller
(all the operators of the block diagrams of this paper are unspecitied
and may be transfer function matrices or time domain input-output
relationships)

input trajectory vector, e, and the external force, d. Let G and
S be two functions that show the robot end-point position in a
global coordinate frame, y, is a function of the input trajec-
tory, e, and the external force, d.? (d is measured in the global
coordinate frame also.)

y=G(e) +S(d) 0))

The motion of the robot end-point in response to imposed
forces, d, is caused by either structural compliance in the
robot? or by the compliance of the positioning controller.
Robot manipulators with tracking controllers are not infinite-
ly stiff in response to external forces (also called disturbances).
Even though the positioning controllers of robots are usually
designed to follow the trajectory commands and reject distur-
bances, the robot end-point will move somewhat in response
to imposed forces on it. S is called the sensitivity function and
it maps the external forces to the robot end-point position. For
a robot with a “‘good’’ positioning controller, S is a mapping

2The assumption that linear superposition (in equation (1)) holds for the ef-
fects of d and e is useful in understanding the nature of the interaction between
the robot and the environment. This interaction is in a feedback form and will
be clarified with the heip of Fig. 2. We will note in Section 4 that the results of
the nonlinear analysis do not depend on this assumption, and one can extend the
obtained results to cover the case when G(e) and S(d) do not superimpose.
In a simple example, if a Remote Center Compliance (RCC) with a linear
dynamic behavior is installed at the endpoint of the robot, then S is equal to the
reciprocal of stiffness (impedance in the dynamic sense) of the RCC.

with small gain. (The gain of an operator is defined in Appen-
dix A.) No assumption on the internal structures of G(e) and
S(d) is made. Figure 1 shows the nature of the mapping in
equation (1).

We define G(e) and S(d) as stable, nonlinear operations in
L ,-space to represent the dynamic behavior of the closed-loop
robots. G(e) and S(d) are such that G- L,"—L,",
S:L,"—L," and also there exist constants «,, 8,, cxz, and /32
such that HG(e)ll <ajllel), +8, and HS(d)||
Say ldl1,+8,. (The defmmon of stability in L,-sense 1s
given in Appendlx A)

A similar modeling method can be given for the analysis of
the linearly treated robots.* The transfer function matrices, G
and S in equation (2) are defined to describe the dynamic
behavior of a linearly treated robot manipulator with position-
ing controller.

y(jw) =G (jw)e(jw) + S(jw)d (jw) 2)
In equation (2), S is called the sensitivity transfer function
matrix and it maps the external forces to the end-point posi-
tion. G(jw) is the closed-loop transfer function matrix that
maps the input trajectory vector, e, to the robot end-point
position, y. For a robot with a ‘‘good’’ positioning controller,
within the closed loop bandwidth; S(jw) is ‘‘small’’ in the
singular value sense,® while G (jw) is approximately a unity
matrix.

3 Dynamic Behavior of the Environment

The environment can be very ‘‘soft’’ or very ‘‘stiff.”’ We do

3 Throughout this paper, for the benefit of clarity, we develop the frequency
domain theory for linearly treated robots in parallet with the nonlinear analysis.
The linear analysis is useful not only for analysis of robots with inherently linear
dynamics, but also for robots with locally linearized dynamic behavior. In the
latter case, the analysis is correct only in the neighborhood of the operating
poml

The maximum singular value of a|maltnx A, diax (A) is defined as:
Az

Oax (A) =max
Izl
where z is a nonzero vector and i-| denotes the Euclidean norm of a vector or an
scalar.

Nomenclature
A = the closed-loop map-
ping from r to e in J = complex number nota- ment position before
Fig. 4 tion V=1 contact
d = vector® of the external J. = Jacobian 0 vector of the joint
force on the robot l;, m; = length and mass of angles of the robot
end-point each link T vector of the robot
e = input trajectory vector M, = inertia matrix torques
E = environment dynamics r = input-command vector €., €45 by ¥ = poOsitive scalars
f = vector of the contact n = degrees of the freedom wp frequency range of
force, of the robot n<6 operation (bandwidth)
UirSar oo on ST S = robot manipulator «;, B;, v = positive scalars
f» = the limiting value of sensitivity (1/stiffness) o small perturbation of
the contact force for T = positive scalar 0, in the
infinitely rigid V = the forward loop map- neighborhood of
environment ping from e to f in 0, =90 deg
G = robot dynamics with Fig. 4 oe end-point deflection in
positioning controller x = vector of the environ- y,-direction
= compensator ment deflection &Y, 6y, end-point deflection in
(operating on the con- x; = location of the center the direction normal
tact force, f) of mass and tangential to the
I, = identity matrix y = vector of the robot part
Ji = moment of inertia of end-point position &fns 8f, contact force in the
each link relative to Yo = the limiting value of direction normal and
the end-point of the the robot position for tangential to the part
link rigid environment wg dynamic
"4 A1 veciors in this paper are nx 1 vectors. xo = vector of the environ- manipulability

Journal of Dynamic Systems, Measurement, and Control

SEPTEMBER 1989, Vol. 111/ 417



S E
de

Interaction of the robot manipulator with the environment
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Fig. 2

not restrain ourselves to any geometry or to any structure. If
one point on the environment is displaced as vector of x, with
force vector, f, then the dynamic behavior of the environment
is given by equation (3).
S=E(x) 3)
If x, is the initial location of the point of contact on the en-
vironment before deformation occurs then, x=y—x,. E is
assumed to be stable in L,-sense; E:L”,—L", and
HE(x) 11, <ay{lxl1, +B;. Confining equation (3) to cover
the linearly treated environment, equation (4) represents the
dynamic behavior of the environment.
S(Uw) =E(jw)x(jw) “)
E (jw) is a transfer function matrix that maps the displacement
vector, x, to the contact force, f. Matrix E is a n X n transfer
function matrix. E is a singular matrix when the robot in-
teracts with the environment in only some directions. For ex-
ample, in grinding a surface, the robot is constrained by the
environment in the direction normal to the surface only.
Readers can be convinced of the truth of equation (4) by
analyzing the relationship of the force and displacement of a
mass, spring and damper as a simple model of the environ-
ment. E resembles the impedance of a system. References [4
and 5] represent (Js?+ Ds+K) for E where J, D, and K are
symmetric matrices and s = jw (4).

4 Nonlinear Dynamic Behavior of the Robot and
Environment

Suppose a manipulator with dynamic equation (1) is in con-
tact with an environment given by equation (3); then f= —d.
Figure 2 shows the dynamics of the robot manipulator and en-
vironment when they are in contact with each other. Note that
in some applications, the robot will have only unidirectional
force on the environment. For example, in the grinding a sur-
face by a robot, the robot can only push the surface. If one
considers positive f; for *‘pushing’’ and negative f; for “‘pull-
ing,”” then in this class of manipulation, the robot
manipulator and the environment are in contact with each
other only along those directions where f;>0 for
i=1, ..., n. In some applications such as screwing a bolt,
the interaction force can be positive and negative. This means
the robot can have clockwise and counterclockwise interaction
torque. The nonlinear discriminator block diagram in Fig. 2 is
drawn with dashed-line to illustrate the above concept.

Using equations (1) and (3), equations (5) and (6) represent
the entire dynamic behavior of the robot and environment
taken as a whole.

y=G(e)+5(-N 5)

f=E(x) where x=y—Xx, (6)

If all the operators in Fig. 2 are considered linear transfer

function matrices, equations (7) and (8) can be obtained to

represent the end point position and the contact force when
Xxg=0.

y=(I,+SE)"'Ge a

f=E(I,+SE)-'Ge )
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To simplify the block diagram of Fig. 2, we introduce a map-
ping from e to f.

f=V(e) )

If all the operators in Fig. 2 are transfer function matrices,
then V=E(I,+S E)-'G. Vis assumed to be a stable operator
in L,-sense; therefore V:L",—L", and also 1iV(e)ll,
<aylleli, +B8,. With this assumption, we basically claim
that a robot with stable tracking controller remains stable
when it is in contact with an environment. Note that one can
still define ¥ without assuming the superposition of effects of
e and d in equation (5) (or equation (1)).

5 The Architecture of the Closed-Loop System

We propose the architecture of Fig. 3 to develop compliancy
for the robot. The compensator, H, is considered to operate
on the contact force, f. The compensator output signal is be-
ing subtracted from the input command vector, r, resulting in
the input trajectory vector, e, for the robot manipulator. The
readers should be reminded that the robot in Fig. 3 can be con-
sidered a weak tracking robot (open loop robot without any
feedback on the position and velocity) when the gain of Sis a
large number.

There are two feedback loops in the system; the inner loop
(which is the natural feedback loop), is the same as the one
shown in Fig. 2. This loop shows how the contact force affects
the robot in a natrual way when the robot is in contact with the
environment. The outer feedback loop is the controlled feed-
back loop. If the robot and the environment are not in con-
tact, then the dynamic behavior of the system reduces to the
one represented by equation (1) (with d=0), which is a plain
positioning system. When the robot and the environment are
in contact, then the values of the contact force and the end-
point position of robot are given by fand y where the follow-
ing equations are true:

y=G(e)+S(-/) (109)
f=E(x) where x=y-—x, (1D
e=r—H() (12)

If the operators in equations (10), (11), and (12) are con-
sidered as transfer function matrices, equations (13) and (14)
can be obtained to represent the interaction force and the
robot end-point position for linearly treated systems when
Xo=0.

f=E(,+SE+GHE)"'Gr (13)
y=(I,+SE+GHE)~'Gr (14)

The objective is to choose a class of compensators, H, to con-
trol the contact force with the input command r. By knowing
S, G, E, and choosing H, one can shape the contact force. The
value of H is the choice of designer and, depending on the
task, it can have various values in different directions. A large
value for H develops a compliant robot while a small H
generates a stiff robot. Reference [7] describes a micro
manipulator in which the compliancy in the system is shaped
for metal removal application. Note that S and GH add in
equation (13) to develop the total compliancy in the system.
GH represents the electronic compliancy in the robot while S
models the natural hardware compliancy (such as RCC or the
robot structural compliancy) in the system.” Equation (13)
also shows that a robot with good tracking capability (small

7Equation (13) can be rewritten as f= (E‘l +S+GH) ™ 1 Gr. Note that the
environment admittance (1/impedance in the linear domain), £~ °, the robot
sensitivity (1/stiffness in the linear domain), S, and the electronic compliancy,
GH, add together to form the total sensitivity of the system. f H=0, then only
the admittance of the environment and the robot add together to form the com-
pliancy for the system. By closing the loop via H, one can not only add to the
total sensitivity but also shape the sensitivity of the system.
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Fig. 3 The closed-loop system

gain for S) may generate a large contact force in a particular
contact. One cannot choose arbitrarily large values for H; the
stability of the closed-loop system of Fig. 3 must be
guaranteed. The trade-off between the closed-loop stability
and the size of H is investigated in Section 6.

When the robot is not in contact with the environment (i.e.,
the outer feedback loops in Fig. 3 do not exist), the actual
position of the robot end-point is governed by equation (1)
(with 4=0). When the robot is in contact with the environ-
ment, then the contact force follows r according to equations
(10), (11), and (12). The input command vector, r, is used dif-
ferently for the two categories of maneuverings; as an input
trajectory command in uncanstrained space (equation (1) with
d=0) and as a command to control force in constrained space.
There is no hardware or software switch in the control system
when the robot travels between unconstrained space and con-
strained space. The feedback loop on the contact force closes
naturally when the robot encounters the environment.

6 Stability Analysis

The objective of this section is to arrive at a sufficient condi-
tion for stability of the system shown in Fig. 3. This sufficient
condition leads to the introduction of a class of compensators,
H, that can be used to develop compliancy for the family of
robot manipulators with dynamic behavior represented by
equation (1). Using operator V defined by equation (9), the
block diagram of Fig. 4 is constructed as a simplified version
of the block diagram in Fig. 3. First we use the Small Gain
Theorem to derive the general stability condition. Then, with
the help of a corollary, we show the stability condition when H
is chosen as a linear operator (transfer function matrix) while
V is a nonlinear operator. Finally, if all the operators in Fig. 3
are transfer function matrices, then the stability bound is
shown by inequality 25. Section 7 is devoted to stability
analysis of the linearly treated systems,® when the environ-
ment is infinitely rigid in comparison with the robot stiffness.

The following proposition (using the Small Gain Theorem
in referencés [15, 16]) states the stability condition of the
closed-loop system shown in Fig. 4.

If conditions 1, I, and III hold:
I. Visa L,-stable operator, that is

(@) V(e): L",—-L", (15)
(b) 1W(eytl,=a,llell, +8, (16)
I1. His chosen such that mapping H (/) is L,-stable, that is
(@) H(N: L",—L", an
b) IIHN s as S, + 85 (18)
II1. and aqas <1 (19)

then the closed-loop system (Fig. 4) is L,-stable. The proof is

gThe stability analysis and the role of robot sensitivity and environment
dynamics on size H are best shown by linear theory in equations (27)-(31). In
particular, we confine our analysis to linear one-degree-of-freedom robot in
equations (32) and (33) for better understanding the nature of the stability
analysis.
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Fig. 4 Simplified version of Fig. 3. In

the
V=ESE+1,)"G.

linear domain,

given in Appendix A. Substituting for |1f11 p from inequality
16 into inequality 18 results in inequality 20. (Note that
Sf=V(e))

||H(V(e))||p$a4a5||e||p+a5:34+35 (20)

a,a;s in inequality 20 represents the gain of the loop mapping,
H(V(e)). The third stability condition requires that H be
chosen such that the loop mapping, H(V(e)), is linearly
bounded with less than a unity slope. The following corollary
develops a stability bound if H is selected as a linear transfer
function matrix.

Corollary. The key parameter in the proposition is the size
of ayas. According to the proposition, to guarantee the
stability of the system, H must be chosen such that norm of
HYV(e) is linearly bounded with a slope that is smaller than
unity. If H is chosen as a linear operator (the impulse respone)
while all the other operators are still nonlinear, then:

HHV(e)ll,sylIV(e)ll, @
¥ = Omax (N) (22

Omax indicates the maximum singular value, and N is a matrix
whose ijth entry is | |1H;11,. In other words, each member of
N is the L, norm of each corresponding member of A. Con-
sidering inequality 16, inequality 21 can be rewritten as:

HHV(e) I, <y 1IV(e)l |, <y llell, +y B,  (23)

Comparing inequality 23 with inequality 20, to guarantee the
closed loop stability, ya, must be smaller than unity, or,
equivalently:

where:

y< — (24)

oy
To quarantee the stability of the closed-loop system, A must
be chosen such its ‘‘size’’ is smaller than the reciprocal of the
‘‘gain’’ of the forward loop mapping in Fig. 4. Note that v
represents a ‘‘size’’ of H in the singular value sense.

When all the operators of Fig. 4 are linear transfer function
matrices one can use Mulitivariable Nyquist Criterion (9) to ar-
rive at the sufficient condition for stability of the closed loop
system. This sufficient condition leads to the introduction of a
class of transfer function matrices, H, that stabilize the family
of linearly treated robot manipulators and environment using
dynamic equations (2) and (4). The detailed derivation for the
stability condition is given in Appendix C. Appendix D shows
that the stability condition given by Nyquist Criterion is a
subset of the condition given by the Small Gain Theorem. Ac-
cording to the results of Appendix C, the sufficient condition
for stability is given by inequality 25.

Onax (GHE)< 0, (SE+1,) forall w€(0,) (25)
or a more conservative condition,
- for all w € (O, 26
Omax (H) < o (E.+SE)-0) or all w €(0,0) (26)

Similar to the nonlinear case, H must be chosen such that its
“*size’’ is smaller than the reciprocal of the ‘‘size’’ of the for-
ward loop mapping in Fig. 4 to guarantee the stability of the
closed-loop system. Note that in inequality 26 o,,,, represents
a ‘‘size”’ of H in the singular value sense. Consider n=1 (one
degree of freedom system) for more understanding about the
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stability criterion. The stability criterion when n=1 is given by
inequality 27.

IHGl < I(S+1/E)| for all we(0,00) (ox)]

where [-1 denotes the magnitude of a transfer function. Since
in many cases G= 1 for all 0 < w=<w,, then H must be chosen
such that:

IHl < I(S+1/E)| for all w€(0,w) (28)

Inequality 28 reveals some facts about the size of H. The
smaller the sensitivity of the robot manipulator is, the smaller
H must be chosen. Also the inequality 28, the more rigid the
environment is, the smaller A must be chosen. In the *‘‘ideal
case,” no H can be found to allow a perfect positioning
system (S=0) to interact with an infinitely rigid environment
(E = ). In other words, for stability of the system shown in
Fig. 3, there must be some compliancy either in robot or in the
environment. RCC, structural dynamics and the tracking con-
troller stiffness form the compliancy on the robot. Section 7
gives more information about the effects of E on the stability
region.

7 Stability for Very Rigid Environment

In most manufacturing tasks, the end-point of the robot
manipulator is in contact with a very stiff environment.
Robotic deburring and grinding are examples of practical
tasks in which the robot is in contact with stiff environment [6,
7]. According to the results in Appendix B, when the environ-
ment is very stiff, (E is very ‘‘large’’ in the singular value
sense), the limiting values for the contact force and the end-
point position are given by equations (29) and (30), respective-
ly:

fo=(S+GH)"'Gr 29
Yu=0 (30)

Since G =1, for all we(0,wy), (the end-point position is *‘ap-
proximately’’ equal to the input trajectory vector, e), the value
of the contact force, f, within the bandwidth of the system
(0,w,) can be approximated by equation (31):

So=(S+H)™'r w€(0,w,) an

By knowing S and choosing H, one can shape the contact
force. The value of (S+ H) within (0,w,) is the designer’s
choice and, depending on the task, it can have various values
in different directions (3). A large value for (S+ H) within
(0,w,) develops a compliant system while a small (S+H)
generates a stiff system. If H is chosen such that (S+ H) is
“‘large’’ in the singular value sense at high frequencies, then
the contact force in response to high frequency components of
r will be small. If H is chosen to guarantee the compliance in
the system according to equation (29), then it must also satisfy
the stability condition. It can be shown that the stability
criterion for interaction with a very rigid environment is given
by inequality 32:

for all

ey () < for all we(0,) (32)

Omax (S™1G)
It is clear that if the environment is very rigid, then one must
choose a very small H to satisfy the stability of the system
when S is “*small.” (A good positioning system has ‘‘small”’
S.) Since G=1I, for all w€(0,w,), the bound for H, for a rigid
environment and a “‘small’’ stiffness, is given by inequality 33.

O max (H) < 0in (S) for all w€(0,wo) 33)

If S is zero, then no H can be obtained to stabilize the system.
To stabilize the system of the very rigid environment and the
robot, there msut be a minimum compliancy in the robot.
Direct drive manipulators, because of the elimination of the
transmission systems, often have large S. This allows for a
wider stability range in constrained manipulation.
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Fig.5 IS+ 1/E! and IGH! for soft environment

We conclude that for stability of the environment and robot
taken as a whole, there must be some initial compliancy either
in the robot or in the environment. The initial compliancy in
the robot can be obtained by a nonzero sensitivity function or
a passive compliant element such as an RCC. Practitioners
always observed that the system of a robot and a stiff environ-
ment can always be stabilized when a compliant element (e.g.,
piece of rubber or an RCC) is installed between the robot and
environment. One can also stabilize the system of robot and
environment by increasing the robot sensitivity function. In
many commercial manipulators the sensitivity of the robot
manipulators can be increased by decreasing the gain of each
actuator positioning loop. This also results in a narrower
bandwidth (slow response in the unconstrained maneuvering)
for the robot positioning system (2).

8 An Example on the Stability Criteria

Consider a one-degree-of-freedom robot with G and S in
equation (1) given as:

(5/6 + 1)(s/ 10+ 1)(s/200 + 1)(s/250 + 1)(s/300 + 1)

ns
S0=" (/s 1ys9+ 1)

The system has a good positioning capability (small gain for S
and unity gain for G at DC). The poles that are located at
—250 and — 300 show the high frequency modes in the robot.
The stability of this system when it is in contact with various
environment dynamics is analyzed. We assume E is constant
and has the value of 10 for all frequency ranges. If we consider
H as a constant gain, then inequality 27 yields that for
H=<0.14 the value of IGH] is always smaller than IS+ 1/E|
for all w€(0,»). Figure 5 shows the plots of IGH! and
IS+ 1/EI| for three values of H. For H=0.08 the system is
stable with the closed-loop poles located at (—301.59,
—-244 81, —204.27, -9.25, -—-5.35, -7.37+8.45) while
H=2.6 results in unstable system with the closed-loop poles
located at (—324.9, —221.31+63.52/, 0.78 +37.82j, —-9.01,
—5.02). Note that the stability condition derived with in-
equality 27 is a sufficient condition for stability; many com-
pensators can be found to stabilize the system without satisfy-
ing inequality 27. Figure 5 shows an example (H = 1.5) that
does not satisfy inequality 27 however the system is stable with
closed-loop poles "at (—317.67, -221.66=x49.06/,
~2.48+£29.9j, —9.02, —5.03). If one uses root locus for
stability analysis, for H <2.32 all the closed loop poles will be
in the left half plane. Once a constant value for stabilizing /
established, one can choose a dynamic compensator to filter
out the high frequency noise in the force measurements:

_0.08
T Is+1

G(S)=
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tain any spring or dampers. The compliancy in the active end-
effector is developed electronically and therefore can be
modulated by an on-line computer. Satisfying a kinematic
constraint for this end-effector allows for uncoupled dynamic
behavior for a bounded range. Two state-of-the-art miniature
actuators power the end-effector directly. A miniature force
cell measures the forces in two dimensions. The tool holder
can maneuver a very light pneumatic grinder in a linear work-
space of about 0.3 X 0.3 in. A bound for the global stability of
the manipulator and environment has been derived. For
stability of the environment and the robot taken as a whole,
there must be some initial compliancy either in the robot or in
the environment. The initial compliancy in the robot can be
obtained by a nonzero sensitivity function for the positioning
controller or a passive compliant element.
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APPENDIX A

Definitions 1 to 7 will be used in the stability proof of the
closed-loop system (Vidyasagar, 1978, Vidyasagar and
Desoer, 1975).

Definition 1: For all p€(1,»), we label as L", the set con-
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sisting of all functions f= (f,, f,,
that:

+ Ja)T: (0,00)~ R such

go Ifi1? dt < for i=1,2,...,n
Definition 2:  For all T€(0, o0), the function JSr defined by:
[f O=st<T

0 T<:

Jr=

is called the truncation of f to bhe interval ©o,n).

Definition 3: The set of all functions S=f e T
((0,0)~R" such that f’EL"p for all finite T is denoted by
L" . f by itself may or may not belong to L,

Definition 4: The normon L" p is defined by:

Ilfllp=[illf,~llpz]m

where | If;11, is defined as:
@ /p
WAl = Ho o, If,-l”dt]

where w; is the weighting factor. w; is particularly useful for
scaling forces and torques of different units.

Definition 5: Let v(- ):L",e—L",,. We say that the operator
V(-) is L ,-stable, if:

(@) v(-): L",~L",

(b) there exist finite real constants «, and 8, such that:

V()i <agllell, +8, v eeL",

According to this definition we first assume that the
operator maps L",, to L",,. It is clear that if one does not
show that u(-):L", —~L",,, the satisfaction of condition (a) is
impossible since L",, contains L" p- Once mapping, v(-), from
L", to L", is established, then we say that the operator v(-)
is L,-stable if, whenever the input belongs to L",, the
resulting output belongs to L",. Moreover, the norm of the
output is not larger than «, times the norm of the input plus
the offset constant 3,.

Definition 6: The smallest a, such that there exist a 8, so
that inequality b of Definition 5 is satisfied is called the gain of
the operator v(-).
Definition 7: Let V(-): L",,—~L",,. The operator V(-) is
said to be causal if:

V(e)r=V(er) V¥ T<o and v e€l”,,

Proof of the Nonlinear Stability Proposition. Define the
closed-loop mapping A:r—e (Fig. 4).
e=r—H(V(e)) (Al)

For each finite 7, inequality (A2) is true.
Herpll, < Hrpli, + HIH(V(e)) ] I for all ¢¢(0,T) (A2)

Since H(V(e)) is L,-stable. Therefore, inequality (A3) is
true.

Herll, < lrpll, +asaqllerl |, +asB, + 85
for all 1€(0,T)

Since asay is less than unity:
asBy +Bs
| A0y

(A3)

|
il for all £€(0,T) (A4)

-
lerll,= e
Inequality (A4), shows that e(-) is bounded over (0,7).
Because this reasoning is valid for every finite 7, it follows
thate(-)eL",,, i.e., that A:L", —L" . Next we show that the
mapping A is L,-stable in the sense of definition 5. Since
reL",, therefore 1lril, <o for all 7€(0,%), therefore in-
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equality (AS) is true.

llell, < oo forall t€(0,) (A3)

inequality (AS) implies e belongs to L,-space whenever r
belongs to L,-space. With the same reasoning from equations
(Al)to (AS), it can be shown that inequality (A6) is true.

asBy +Bs
I —oasoy

LIl

Ilell,= for all te(0,) (A6)

- [+ 21+ ¥
Inequality (A6) shows the linear boundedness of e (condition b
of definition 5). Inequalities (AS5) and (A6) taken together,
guarantee that the closed-loop mapping A4 is L ,-stable.

APPENDIX B

A very rigid environment generates a very large force for a
small displacement. We choose the minimum singular value of
E to represent the size of E. The following proposition states
the limiting value of the force when the robot manipulator is
in contact with a very rigid environment.

If 6, (E) >M,, where My is an arbitrarily large number, then
the value of the force given by equation (13) will approach to
the expression given by equation (BI)

fo=(S+GH)"'Gr (BI)
Proof: We will prove that |f,, —f| approaches a small number
as M, approaches a large number.

fo—f=(S+GH)"'[l,— (S+GH) E (I, + SE+GHE)~'|Gr

(B2)
Factoring (I, + SE+ GHE) ~! to the right-hand side:
f,—f=(S+GH)"(I,,+SE+GHE)"GF (B3)
Ifoo —f < Opmax (S+ GH) ! X 0y (I, + SE
+GHE) ™' X 0pax (G) I} (B4)
o mfl € Omax (G) I} @9
* Omin (S+ GH) X lo i (SE + GHE) — 11
Omax (C) Il
Vo~ < ST GH) X 10,00 (5 + GH) X gy (E) 11
(B6)

Omax (G) and o, (S+GH) are bounded values. If
Omin (E) >M,, then it is clear that the left-hand side of ine-
quality (B6) can be an arbitrarily small number by choosing
M, to be a large number. The proof for y, =0 is similar to the
above.

APPENDIX C

The objective is to find a sufficient condition for stability of
the closed-loop system in Fig. 3 by Nyquist Criterion. The
block diagram in Fig. 3 can be reduced to the block diagram in
Fig. C1 when all the operators are linear transfer function
matrices and xo =0

There are two elements in the feedback loop; GHE and SE.
SE shows the natural force feedback while GHE represents the
controlled force feedback in the system. If H=0, then the
system in Fig. C1 reduces to the system in Fig. 2 (a stable posi-
tioning robot manipulator which is in contact with the en-
vironment E). The objective is to use Nyquist Criterion 9 to
arrive at the sufficient condition for stability of the system
when H#0. The following conditions are regarded:

1) The closed loop system in Fig. C1 is stable if H=0. This
condition simply states the stability of the robot manipulator
and environment when they are in contact. (Fig. 2 shows this

configuration.) ) ‘
2) H is chosen as a stable linear transfer function matrix.
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{0 -

GHE + SE

Fig. C1 Simplified block diagram of the system in Fig. 3

Therefore the augmented loop transfer function (GHE + SE)
has the same number of unstable poles that SE has. Note that
in many cases SE is a stable system.

3) Number of poles on jw axis for both loop SE and
(GHE + SE) are equal.

Considering that the system in Fig. Cl is stable when H=0,
we plan to find how robust the system is when GHE is added
to the feedback loop. If the loop transfer function SE (without
compensator, H) develops a stable closed-loop system, then
we are looking for a condition on H such that the augmented
loop transfer function (GHE + SE) guarantees the stability of
the closed-loop system. According to the Nyquist Criterion,
the system in Fig. C1 remains stable if the anti-clockwise en-
circlement of the det(SE + GHE + I,,) around the center of the
s-plane is equal to the number of unstable poles of the loop
transfer function (GHE + SE). According to conditions 2 and
3, the loop transfer functions SE and (GHE + SE) both have
the same number of unstable poles. The closed-loop system
when H=0 is stable according to condition 1; the en-
circlements of det(SE+1,) is equal to unstable poles of SE.
When GHE is added to the system, for stability of the closed-
loop system, the number of the encirclements of
det (SE + GHE + I,) must be equal to the number of unstable
poles of the (GHE + SE). Since the number of unstable poles
of (SE+ GHE) and SE are the same, therefore the stability of
the system det(SE + GHE + I,)) must have the same number of
encirclements that det (SE + I,,) has. A sufficient condition to
guarantee the equality of the number of encirclements of
det(SE+ GHE+1,) and det(SE+1,) is that the det(SE +
GHE +I,,) does not pass through the origin of the s-plane for
all possible nonzero but finite values of H, or

det(SE+GHE+1,)#0  for all we(0,00) (1)

If inequality C1 does not hold then there must be a nonzero
vector z such that:

(SE+ GHE+1,)z=0 (C2)
or: GHE z=—-(SE+1,)z (C3)
A sufficient condition to guarantee that equality (C3) will not
happen is given by inequality (C4).

Omax (GHE) <0 (SE+1,) for all we(0,o)
or a more conservative condition:

1

Omax (E(SE+1,)7'G)
Note that E(SE +I,) ~'G is the transfer function matrix that
maps e to the contact force, f. Figure 4 shows the closed-loop
system. According to the result of the proposition, H must be
chosen such that the size of H is smaller than the reciprocal of

the size of the forward loop transfer function,
E(SE+1,)"'G.

(C4)

Tmax (H)<

for all we(0,)

APPENDIX D

The following inequalities are true when p=2 and H and V
are linear operators.

HH(V(eN I, <vlIV(e)ll,
V(e l,sullel,

(DD
(D2)

Transactions of the ASME



where:
U=0m,,(Q), and Q is the matrix whose ijth entry is given by
(D) =sup, [ ()],
v=0,.(R), and R is the matrix whose [jth entry is given by
(R); =sup, | (F) ;]
Substituting inequality (D2) in (D1):

lHHV(e)I |, <prllell, (D3)
According to the stability condition, to guarantee the closed
loop stability uv < 1 or:

y — (D4)

I

Note that the followings are true:
Opax (V) =p for all we (0,0) (D5)
Opax ()= for all we(0,) (D6)

Substituting (DS5) and (D6) into inequality (D4) which
guarantees the stability of the system, the following inequality
is obtained:

(D7)

O max (H) < for all wE(O,oo)

Tmax (V)

Omax (F) < for all we(0,00) (D8)

Omax (E(I,+SE)™'G)
Inequality (D8) is identical to inequality (26). This shows that
the linear condition for stability given by the multivariable Ny-
quist Criterion is a subset of the general condition given by the
Small Gain Theorem.

APPENDIX E

This Appendix is dedicated to deriving of the Jacobian and
the mass matrix of a general five-bar linkage. In Fig. E1, J,, {;,
x;, m;, and 8, represent the moment of the inertia relative to
the end-point, length, location of the center of mass, mass and
the orientation of each link for i=1, 2, 3 and 4.

Using the standard method, the Jacobian of the linkage can
be represented by equation (E1).

Journal of Dynamic Systems, Measurement, and Control

Fig. E1 The five bar linkage in the general form
" Jn J12
Jo= (ED)
e

where:

Juy=—1, sin(@1)+a i sin(2), J, =l,cos(6l)~a 5 cos(62)
Jia=b l5 sin(02), Jy=b I5 cos(62)

The mass matrix is given by equation (E2).

[Mll MIZJ
M; M,
where:

My=Ji+my 2+ J, a2 +J; 2 +2x, 1, cos(8, —6,)a m,
My=J,ab+bcos(d, —0,)x, |, my+Jyed

+c cos(f, —03)x; I, m,

My =M,

My=2my I, x3dcos(,—-0,)+Js >+ J,+m? 1,2+ J, b?
a, b, ¢, d are given below.

a=1, sin(8, —8,;)/(/, sin(8, — 6,))

b=1, sin(8, - 6,)/(!, sin(0, —9,))

c=1, sin(8; - 0,)/(I; sin(f, — 6,))

d =1, sin(6, —0,)/(l, sin(@, —8,))

M= (E2)
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Fig. 9 The position transfer function, G
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Fig. 10 The sensitivity transfer function, S

the input command represents the magnitude of G at each fre-
quency. For measurement of the sensitivty transfer function
matrix, the input excitation was supplied by the rotation of an
eccentric mass mounted on the tool bit. The rotating mass ex-
erts a centrifugal, sinusoidal force on the tool bit. The fre-
quency of the imposed force is equal to the frequency of rota-
tion of the mass. By varying the frequency of the rotation of
the mass, one can vary the frequency of the imposed force on
the end-effector. Figure 10 depicts the sensitivity transfer
function. The values of the sensitivity transfer functions along
the normal and tangential directions, within their bandwidths,
are 0.7 in/1bf and 0.197 in/Ibf, respectively.

The nature of compliancy for the end effector is given by
equation (31). H was chosen such that (S+H) ! in each
direction is equal to the desired stiffness. H must also
guarantee the stability of the closed-loop system. The stability
criteria for a one-degree-of-freedom system is given by ine-
qualities 32 and 33. Inequality 33 shows that the more rigid the
environment is, the smaller A must be chosen to guarantee the
stability of the closed-loop system. In the case of a rigid en-
vironment (‘‘large” E) and a ‘‘good’” positioning system
(“‘small”” S), H must be chosen as a very small gain. The
values for H along the normal and tangential directions within
their bandwidths are 0.01 in/1bf and 0.194 in/Ibf, respectively.
These values result in 0.39 in/Ibf and 0.7 in/Ibf for (S+H)
within the bandwidth of the system. Figure 11 shows the ex-
perimental and theoretical values of the end-point compliancy
{Fig. 11 actually shows the end-point admittance where it is
reciprocal of the impedance in the linear case.)

In another set of experiments, the whole end-effector was
moved in two different directions to encounter a edge of a
part. The objective was to observe the uncoupled time-domain
dynamic behavior of the end-effector when the end-effector is
in contact with the hard environment. The controller was
designed such that the values of (S+H) ! in tangential and
normal direction are 0.32 Ibf/in and 4.0 Ib/in, respectively.
First the end-effector was moved 0.5 in. beyond the edge of
the part in y,-direction. Figure 12 shows the contact forces.
The force in y,-direction increases from zero to 2.0 Ibf while
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Fig. 13 Force in the y,-direction increases from zero to 0.16 Ib

the force in the y,-direction remains at zero. Next the end-
effector was moved 0.5 in. beyond the edge of the part in the
y,~direction. Figure 13 shows the contact forces. The force in
y,-direction increases from zero to0 0.16 Ibf while the force in
y,-direction remains at zero. In both cases the end-effector
was moved as 0.5 in. beyond the edge of the stiff wall. Since
the stiffness of the end-effector in y,-direction is larger than
the stiffness in y,-direction, the contact force in y,-direction is
larger than the contact force in y,-direction.

11 Summary and Conclusion

A new controller architecture for compliance control has
been investigated using unstructured models for dynamic
behavior of robot manipulators and environment. This
unified approach of modeling robot and environment
dynamics is expressed in terms of sensitivity functions. The
control approach allows not only for tracking the input-
command vector, but also for compliancy in the constrained
maneuverings. An active end-effector has been designed,
built, and tested for verification of the control method. The
active end-effector (unlike the passive system) does not con-
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tain any spring or dampers. The compliancy in the active end-
effector is developed electronically and therefore can be
modulated by an on-line computer. Satisfying a kinematic
constraint for this end-effector allows for uncoupled dynamic
behavior for a bounded range. Two state-of-the-art miniature
actuators power the end-effector directly. A miniature force
cell measures the forces in two dimensions. The tool holder
can maneuver a very light pneumatic grinder in a linear work-
space of about 0.3 0.3 in. A bound for the global stability of
the manipulator and environment has been derived. For
stability of the environment and the robot taken as a whole,
there must be some initial compliancy either in the robot or in
the environment. The initial compliancy in the robot can be
obtained by a nonzero sensitivity function for the positioning
controller or a passive compliant element.
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APPENDIX A

Definitions 1 to 7 will be used in the stability proof of the
closed-loop system (Vidyasagar, 1978, Vidyasagar and
Desoer, 1975).

Definition 1: For all pe(1,:), we label as L", the set con-
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sisting of all functions f= UisSas oo o, £,)7:(0,00)— R™ such

that:
So If;17 dt< oo for i=1,2,...,n
Definition 2:  For all T¢(0, o), the function JSr defined by:
f O=t=T
T=
0 T<¢

is called the truncation of f to bhe interval ©,7).

Definition 3: The set of all functions f= Sis Sfos oo ST
((0,00)—R" such that f7 €L, for all finite T is denoted by
L*,,. fby itself may or may not belong to L” P

Definition 4: The normon L" p is defined by:

lvu,,:[f: ||f,.||,,2]"2

i=1

where | |f;11, is defined as:

A1, = [S: o If,-lPdt] v

where w; is the weighting factor. w; is particularly useful for
scaling forces and torques of different units.
Definition 5: Let v(-):L" pe—L" po. We say that the operator
V(-) is L ,-stable, if:

(a) v(-): L,—L",

(b) there exist finite real constants a4 and B, such that:

IlV(e)Ilpsa4|lel|p+B4 v e€L”,

According to this definition we first assume that the
operator maps L",, to L”,,. It is clear that if one does not
show that v(.):L" pe—L"pe, the satisfaction of condition (a) is
impossible since 1" pe CONtains L”,. Once mapping, v(-), from
L*,, to L", is established, then we say that the operator v(-)
is L,-stable if, whenever the input belongs to L” ps the
resulting output belongs to L” p- Moreover, the norm of the

output is not larger than «, times the norm of the input plus
the offset constant 8,.

Definition 6: The smallest o, such that there exist a B4 so
that inequality b of Definition § is satisfied is called the gain of
the operator v(-).

Definition 7: Let V(-): L*p—~L",. The operator V(-) is
said to be causal if:

V(ie)r=V(er) Vv T<o and v eclL”,,
Proof of the Nonlinear Stability Proposition. Define the
closed-loop mapping A:r—e (Fig. 4).
e=r—H(V(e)) (Al)
For each finite T, inequality (A2) is true.
Herll,=< liryl lp+ HH(V(e)) I Iy for all r€(0,T) (A2)

Since H(V(e)) is L,-stable. Therefore, inequality (A3) is
true.

Herll,= rpl ), +asay Herl |, +asfB, + 65

for all 1€(0,7) (A3)
Since asay is less than unity:
lirpl +
lerll,s — T2 4 %Pa¥hs ool e, (Ad)
—as0a, 1-os50,

Inequality (A4), shows that e(-) is bounded over (0,7).
Because this reasoning is valid for every finite 7, it follows
that e(- YEL” ,,, i.¢., that A:L",,—L",,. Next we show that the
mapping A is L,-stable in the sense of definition 5. Since
rel",, therefore llrll, <o for all r€(0,), therefore in-
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equality (AS) is true.

lleil,<oo forall #€(0,) (A5)

inequality (AS) implies e belongs to L,-space whenever r
belongs to L,-space. With the same reasoning from equations
(Al) to (AS), it can be shown that inequality (A6) is true.

l'r”p (1564"'35
1—asay
Inequality (A6) shows the linear boundedness of e (condition b

of definition 5). Inequalities (AS5) and (A6) taken together,
guarantee that the closed-loop mapping A is L ,-stable.

lell, <

for all 7€(0,) (A6)
— Q50

APPENDIX B

A very rigid environment generates a very large force for a
small displacement. We choose the minimum singular value of
E to represent the size of E. The following proposition states
the limiting value of the force when the robot manipulator is
in contact with a very rigid environment.

If 0, (E) >M,, where M, is an arbitrarily large number, then
the value of the force given by equation (13) will approach to
the expression given by equation (BI)

fo=(S+GH)"'Gr ‘ (B1)
Proof: We will prove that If,, —f| approaches a small number
as M|, approaches a large number. o

So—=f=(S+GH)"'[I,—(S+GH) E (1,,+SE#GHE)“]Gr

e s . B
Factoring (7, + SE + GHE) ! to the right-hand side:
fu—f= (S+GH)"(I,,+SE+GHE)‘IGr (B3)
o —f1 <Omax (S+GH) ~! X 00 (I, + SE
+GHE) ' X0, (G) Ir| (B4)
: Omax (G) Il
VoSS 7Gx o (SETGHE) =1T &
Tmax (G) 17l
fo — :
V=Sl < Omin (S+ GH) X loy (S+GH) X o ( E)y—11
(B6)

Onmax (G) and o0,;,(S+GH) are bounded values. If
Omin (E) >M,, then it is clear that the left-hand side of ine-
quality (B6) can be an arbitrarily small number by choosing
M, to be a large number. The proof for y,, =0 is similar to the
above.

APPENDIX C

The objective is to find a sufficient condition for stability of
the closed-loop system in Fig. 3 by Nyquist Criterion. The
block diagram in Fig. 3 can be reduced to the block diagram in
Fig. Cl1 when all the operators are linear transfer function
matrices and x, =0

There are two elements in the feedback loop; GHE and SE.
SE shows the natural force feedback while GHE represents the
controlled force feedback in the system. If H=0, then the
system in Fig. C1 reduces to the system in Fig. 2 (a stable posi-
tioning robot manipulator which is in contact with the en-
vironment E). The objective is to use Nyquist Criterion (9) to
arrive at the sufficient condition for stability of the system
when H#0. The following conditions are regarded:

1) The closed loop system in Fig: C1 is stable if H=0. This
condition simply states the stability of the robot manipulator
and environment when they are in contact. (Fig. 2 shows this
configuration.)

2) H is chosen as a stable linear transfer function matrix.
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GHE+SE

Fig. C1 Simplified block diagram of the system in Fig. 3

Therefore the augmented loop transfer function (GHE + SE)
has the same number of unstable poles that SE has. Note that
in many cases SE is a stable system.

3) Number of poles on jw axis for both loop SE and
(GHE + SE) are equal.

Considering that the system in Fig. C1 is stable when H=0,
we plan to find how robust the system is when GHE is added
to the feedback loop. If the loop transfer function SE (without -
compensator, H) develops a stable closed-loop system, then
we are looking for a condition on H such that the augmented
loop transfer function (GHE+ SE) guarantees the stability of
the closed-loop system. According to the Nyquist Criterion,
the system in Fig. C1 remains stable if the anti-clockwise en-
circlement of the det(SE + GHE + I,,) around the center of the
s-plane is equal to the number of unstable poles of the loop
transfer function (GHE + SE). According to conditions 2 and
3, the loop transfer functions SE and (GHE + SE) both have
the same number of unstable poles. The closed-loop system
when H=0 is stable according to condition 1; the en-
circlements of det(SE+1,) is equal to unstable poles of SE.
When GHE is added to the system, for stability of the closed-
loop system, the number of the encirciements of
det(SE+ GHE + I,) must be equal to the number of unstable
poles of the (GHE+ SE). Since the number of unstable poles
of (SE+ GHE) and SE are the same, therefore the stability of
the system det(SE + GHE + I,,) must have the same number of
encirclements that det (SE +1,,) has. A sufficient condition to
guarantee the equality of the number of encirclements of
det(SE+ GHE+1,) and det(SE+1,) is that the det(SE+
GHE + 1) does not pass through the origin of the s-plane for
all possible nonzero but finite values of H, or

det(SE+GHE+1,) #0 for all w€(0,0) (C1)

If inequality C1 does not hold then there must be a nonzero
vector z such that:

(SE+GHE+1,)z=0 (C2)
or: GHE z=—(SE+1,)z (C3)

A sufficient condition to guarantee that equality (C3) will not
happen is given by inequality (C4).

Omax (GHE) <0pin (SE+1,)  forall we(0,c) (C4)
or a more-conservative condition:

1
Omax (H) < for all we(0,0) (CS5)

Oom (E(SE+1,)~1G)

Note that E(SE+1,) ~'G is the transfer function matrix that
maps e to the contact force, f. Figure 4 shows the closed-loop
system. According to the result of the proposition, H must be
chosen such that the size of H is smaller than the reciprocal of
the - size of the forward loop transfer function,
E(SE+1,)"'G.

APPENDIX D

The following inequalities are true when p=2 and H and V
are linear operators.

HH(V(e) ], =v 1 1V(e)11,,
HV(e) 1, <pllell,

(D1)
(D2)
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where:

k=04, (0), and Q is the matrix whose ijth entry is given by

(Q);=sup, I(V)yl,

V&0, (R), and R is the matrix whose ijth entry is given by

(R);;=sup, | (H);|

Sfbstituting inequality (D2) in (D1):
HHV(e)l |, <prllell, (D3)

cording to the stability condition, to guarantee the closed
loop stability ur<1 or:

| e (D4)
I
Note that the followings are true:
Onax (V) =p for all we(0,) (D5)
Omax (H)<v for all we(0,0) (D6)

Substituting (DS) and (D6) into inequality (D4) which
guarantees the stability of the system, the following inequality
is'obtained:

a+,, (H)<

O hax (H) <

for all we(0,) D7

1
Omax (V)
1
Omax (E(I,+ SE)'G)

Inequality (D8) is identical to inequality (26). This shows that
the linear condition for stability given by the multivariable Ny-
quist Criterion is a subset of the general condition given by the
Small Gain Theorem.

for all w€(0,) (D8)

APPENDIX E

This Appendix is dedicated to deriving of the Jacobian and
the mass matrix of a general five-bar linkage. In Fig. E1, J,, [;,
Xx;y m;, and 6, represent the moment of the inertia relative to
the end-point, length, location of the center of mass, mass and
the orientation of each link for i=1, 2, 3 and 4.

‘Using the standard method, the Jacobian of the linkage can
bd represented by equation (E1).

|
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Fig. E1

The five bar linkage in the general form

s [Ju 112]
I Jp
where:

Jiu=~—1 sin(01) +a I sin(02), J,, =l cos(fl)—a Is cos(62)
J|2 =pb 15 sin(02), 122 =b 15 COS(02)
The mass matrix is given by equation (E2).

[Mll MIZJ
M:

M, My
where:

My=Ji+my L2 +J, a2+ Jy +2x, 1) cos(B, ~0,)a m,
M, =J, ab+b cos(@, —8,)x, I, my+Jycd

+ccos(@, —0;)x; I, m,

My =M,

My=2myl xydcos(B,—0;)+J, d+J,+m 2+, b?
a, b, ¢, d are given below.

a=1, sin(9, —6,)/(l, sin(8, — 6,))

b=, sin(8,—0,)/(/, sin(9, — 6;))

c=1, sin(8, —0,)/ (/5 sin(8, —05))

d=1, sin(f, — 0,)/(I; sin(6, —65))

(ED)

(E2)
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All parameters were initially assumed to be set to their true
value, but the value of mass at the end of the second link, m,
was increased from 2 kg to 3 kg at the time 7= 5 sec. Figures 3
to 6 show the results of the tracking error response and the
parameter identification process. I';; =1 was used for all the
cases shown. Note that the state variables (Figs. 3, 4) have
essentially come to their correct values within three seconds.
As expected, the estimates of the second mass (Fig. 6) show
the most severe estimation errors; however this estimate has
also converged to the actual mass value after three seconds.
The estimate of the first mass (Fig. 5) shows a maximum error
of approximately 10 percent from the actual value.

§ | Conclusions

From the above developments, we can draw the following
conclusions First, the adaptive pure computed torque
algorithm is easy to implement, computationally very efficient
and is stable under moderate feedback gains. The algorithm
allows accurate estimations of system parameters and ex-
cellent control of the system state variables. The design is
made very simple by the explicit expression of the parameter
range allowed for stability. Second, if no additional filters are
used, and a Lyapunov function method is assumed, then this
paper seems to have accounted for many of the reasonable
choices of the control laws of the form (§) and adaptation laws
in|the form of (9).
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